Probability With Martingales
Download Probability With Martingales full books in PDF, epub, and Kindle. Read online free Probability With Martingales ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David Williams |
Publisher | : Cambridge University Press |
Total Pages | : 274 |
Release | : 1991-02-14 |
Genre | : Mathematics |
ISBN | : 9780521406055 |
This is a masterly introduction to the modern, and rigorous, theory of probability. The author emphasises martingales and develops all the necessary measure theory.
Author | : P. Hall |
Publisher | : Academic Press |
Total Pages | : 321 |
Release | : 2014-07-10 |
Genre | : Mathematics |
ISBN | : 1483263223 |
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Author | : René L. Schilling |
Publisher | : Cambridge University Press |
Total Pages | : 404 |
Release | : 2005-11-10 |
Genre | : Mathematics |
ISBN | : 9780521850155 |
This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.
Author | : Rick Durrett |
Publisher | : Cambridge University Press |
Total Pages | : |
Release | : 2010-08-30 |
Genre | : Mathematics |
ISBN | : 113949113X |
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Author | : Samuel N. Cohen |
Publisher | : Birkhäuser |
Total Pages | : 673 |
Release | : 2015-11-18 |
Genre | : Mathematics |
ISBN | : 1493928678 |
Completely revised and greatly expanded, the new edition of this text takes readers who have been exposed to only basic courses in analysis through the modern general theory of random processes and stochastic integrals as used by systems theorists, electronic engineers and, more recently, those working in quantitative and mathematical finance. Building upon the original release of this title, this text will be of great interest to research mathematicians and graduate students working in those fields, as well as quants in the finance industry. New features of this edition include: End of chapter exercises; New chapters on basic measure theory and Backward SDEs; Reworked proofs, examples and explanatory material; Increased focus on motivating the mathematics; Extensive topical index. "Such a self-contained and complete exposition of stochastic calculus and applications fills an existing gap in the literature. The book can be recommended for first-year graduate studies. It will be useful for all who intend to work with stochastic calculus as well as with its applications."–Zentralblatt (from review of the First Edition)
Author | : Achim Klenke |
Publisher | : Springer Science & Business Media |
Total Pages | : 621 |
Release | : 2007-12-31 |
Genre | : Mathematics |
ISBN | : 1848000480 |
Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.
Author | : B.G. Ivanoff |
Publisher | : CRC Press |
Total Pages | : 228 |
Release | : 1999-10-27 |
Genre | : Mathematics |
ISBN | : 9781584880820 |
Set-Indexed Martingales offers a unique, comprehensive development of a general theory of Martingales indexed by a family of sets. The authors establish-for the first time-an appropriate framework that provides a suitable structure for a theory of Martingales with enough generality to include many interesting examples. Developed from first principles, the theory brings together the theories of Martingales with a directed index set and set-indexed stochastic processes. Part One presents several classical concepts extended to this setting, including: stopping, predictability, Doob-Meyer decompositions, martingale characterizations of the set-indexed Poisson process, and Brownian motion. Part Two addresses convergence of sequences of set-indexed processes and introduces functional convergence for processes whose sample paths live in a Skorokhod-type space and semi-functional convergence for processes whose sample paths may be badly behaved. Completely self-contained, the theoretical aspects of this work are rich and promising. With its many important applications-especially in the theory of spatial statistics and in stochastic geometry- Set Indexed Martingales will undoubtedly generate great interest and inspire further research and development of the theory and applications.
Author | : John B. Walsh |
Publisher | : American Mathematical Society |
Total Pages | : 439 |
Release | : 2023-08-16 |
Genre | : Mathematics |
ISBN | : 1470473879 |
John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. —Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas so the reader never loses sight of the forest by being surrounded by too many trees. As noted in the preface, “To teach a course with pleasure, one should learn at the same time.” Indeed, almost all instructors will learn something new from the book (e.g. the potential-theoretic proof of Skorokhod embedding) and at the same time, it is attractive and approachable for students. —Yuval Peres, Microsoft With many examples in each section that enhance the presentation, this book is a welcome addition to the collection of books that serve the needs of advanced undergraduate as well as first year graduate students. The pace is leisurely which makes it more attractive as a text. —Srinivasa Varadhan, Courant Institute, New York This book covers in a leisurely manner all the standard material that one would want in a full year probability course with a slant towards applications in financial analysis at the graduate or senior undergraduate honors level. It contains a fair amount of measure theory and real analysis built in but it introduces sigma-fields, measure theory, and expectation in an especially elementary and intuitive way. A large variety of examples and exercises in each chapter enrich the presentation in the text.
Author | : J.C. Taylor |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461206596 |
Assuming only calculus and linear algebra, Professor Taylor introduces readers to measure theory and probability, discrete martingales, and weak convergence. This is a technically complete, self-contained and rigorous approach that helps the reader to develop basic skills in analysis and probability. Students of pure mathematics and statistics can thus expect to acquire a sound introduction to basic measure theory and probability, while readers with a background in finance, business, or engineering will gain a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces.
Author | : Robert Liptser |
Publisher | : Springer Science & Business Media |
Total Pages | : 806 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9400924380 |
One service mathematics has rc:ndered the 'Et moi, "', si j'avait su comment CD revenir, je n'y serais point alle. ' human race. It has put common SCIIJC back Jules Verne where it belongs. on the topmost shelf next to tbe dusty canister 1abdled 'discarded non- The series is divergent; tberefore we may be sense'. able to do sometbing witb it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ... '; 'One service logic has rendered com puter science ... '; 'One service category theory has rendered mathematics ... '. All arguably true_ And all statements obtainable this way form part of the raison d'etre of this series_ This series, Mathematics and Its ApplicatiOns, started in 1977. Now that over one hundred volumes have appeared it seems opportune to reexamine its scope_ At the time I wrote "Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches.