Probability With Applications In Science And Engineering
Download Probability With Applications In Science And Engineering full books in PDF, epub, and Kindle. Read online free Probability With Applications In Science And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Matthew A. Carlton |
Publisher | : Springer |
Total Pages | : 664 |
Release | : 2017-03-30 |
Genre | : Mathematics |
ISBN | : 3319524011 |
This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students
Author | : Bhisham C. Gupta |
Publisher | : John Wiley & Sons |
Total Pages | : 896 |
Release | : 2013-04-29 |
Genre | : Mathematics |
ISBN | : 1118464044 |
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Probability with Applications for Engineers and Scientists covers descriptive statistics first, then goes on to discuss the fundamentals of probability theory. Along with case studies, examples, and real-world data sets, the book incorporates clear instructions on how to use the statistical packages Minitab® and Microsoft® Office Excel® to analyze various data sets. The book also features: • Detailed discussions on sampling distributions, statistical estimation of population parameters, hypothesis testing, reliability theory, statistical quality control including Phase I and Phase II control charts, and process capability indices • A clear presentation of nonparametric methods and simple and multiple linear regression methods, as well as a brief discussion on logistic regression method • Comprehensive guidance on the design of experiments, including randomized block designs, one- and two-way layout designs, Latin square designs, random effects and mixed effects models, factorial and fractional factorial designs, and response surface methodology • A companion website containing data sets for Minitab and Microsoft Office Excel, as well as JMP ® routines and results Assuming no background in probability and statistics, Statistics and Probability with Applications for Engineers and Scientists features a unique, yet tried-and-true, approach that is ideal for all undergraduate students as well as statistical practitioners who analyze and illustrate real-world data in engineering and the natural sciences.
Author | : Matthew A. Carlton |
Publisher | : John Wiley & Sons |
Total Pages | : 642 |
Release | : 2020-12-22 |
Genre | : Technology & Engineering |
ISBN | : 1119717868 |
Probability with STEM Applications, Third Edition, is an accessible and well-balanced introduction to post-calculus applied probability. Integrating foundational mathematical theory and the application of probability in the real world, this leading textbook engages students with unique problem scenarios and more than 1100 exercises of varying levels of difficulty. The text uses a hands-on, software-oriented approach to the subject of probability. MATLAB and R examples and exercises — complemented by computer code that enables students to create their own simulations — demonstrate the importance of software to solve problems that cannot be obtained analytically. Revised and updated throughout, the textbook covers basic properties of probability, random variables and their probability distributions, a brief introduction to statistical inference, Markov chains, stochastic processes, and signal processing. This new edition is the perfect text for a one-semester course and contains enough additional material for an entire academic year. The blending of theory and application will appeal not only to mathematics and statistics majors but also to engineering students, and quantitative business and social science majors. New to this Edition: Offered as a traditional textbook and in enhanced ePub format, containing problems with show/hide solutions and interactive applets and illustrations Revised and expanded chapters on conditional probability and independence, families of continuous distributions, and Markov chains New problems and updated problem sets throughout Features: Introduces basic theoretical knowledge in the first seven chapters, serving as a self-contained textbook of roughly 650 problems Provides numerous up-to-date examples and problems in R and MATLAB Discusses examples from recent journal articles, classic problems, and various practical applications Includes a chapter specifically designed for electrical and computer engineers, suitable for a one-term class on random signals and noise Contains appendices of statistical tables, background mathematics, and important probability distributions
Author | : Haym Benaroya |
Publisher | : CRC Press |
Total Pages | : 770 |
Release | : 2005-06-24 |
Genre | : Science |
ISBN | : 9780824723156 |
Certainty exists only in idealized models. Viewed as the quantification of uncertainties, probabilitry and random processes play a significant role in modern engineering, particularly in areas such as structural dynamics. Unlike this book, however, few texts develop applied probability in the practical manner appropriate for engineers. Probability Models in Engineering and Science provides a comprehensive, self-contained introduction to applied probabilistic modeling. The first four chapters present basic concepts in probability and random variables, and while doing so, develop methods for static problems. The remaining chapters address dynamic problems, where time is a critical parameter in the randomness. Highlights of the presentation include numerous examples and illustrations and an engaging, human connection to the subject, achieved through short biographies of some of the key people in the field. End-of-chapter problems help solidify understanding and footnotes to the literature expand the discussions and introduce relevant journals and texts. This book builds the background today's engineers need to deal explicitly with the scatter observed in experimental data and with intricate dynamic behavior. Designed for undergraduate and graduate coursework as well as self-study, the text's coverage of theory, approximation methods, and numerical methods make it equally valuable to practitioners.
Author | : William DeCoursey |
Publisher | : Elsevier |
Total Pages | : 417 |
Release | : 2003-05-14 |
Genre | : Mathematics |
ISBN | : 0080489753 |
Statistics and Probability for Engineering Applications provides a complete discussion of all the major topics typically covered in a college engineering statistics course. This textbook minimizes the derivations and mathematical theory, focusing instead on the information and techniques most needed and used in engineering applications. It is filled with practical techniques directly applicable on the job. Written by an experienced industry engineer and statistics professor, this book makes learning statistical methods easier for today's student. This book can be read sequentially like a normal textbook, but it is designed to be used as a handbook, pointing the reader to the topics and sections pertinent to a particular type of statistical problem. Each new concept is clearly and briefly described, whenever possible by relating it to previous topics. Then the student is given carefully chosen examples to deepen understanding of the basic ideas and how they are applied in engineering. The examples and case studies are taken from real-world engineering problems and use real data. A number of practice problems are provided for each section, with answers in the back for selected problems. This book will appeal to engineers in the entire engineering spectrum (electronics/electrical, mechanical, chemical, and civil engineering); engineering students and students taking computer science/computer engineering graduate courses; scientists needing to use applied statistical methods; and engineering technicians and technologists. * Filled with practical techniques directly applicable on the job* Contains hundreds of solved problems and case studies, using real data sets* Avoids unnecessary theory
Author | : Paul H. Kvam |
Publisher | : John Wiley & Sons |
Total Pages | : 448 |
Release | : 2007-08-24 |
Genre | : Mathematics |
ISBN | : 9780470168691 |
A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.
Author | : Roman Vershynin |
Publisher | : Cambridge University Press |
Total Pages | : 299 |
Release | : 2018-09-27 |
Genre | : Business & Economics |
ISBN | : 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author | : John H. Drew |
Publisher | : Springer Science & Business Media |
Total Pages | : 220 |
Release | : 2008-01-08 |
Genre | : Mathematics |
ISBN | : 0387746765 |
This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.
Author | : Stacey J Shaefer |
Publisher | : CRC Press |
Total Pages | : 394 |
Release | : 2007-02-22 |
Genre | : Mathematics |
ISBN | : 1000654060 |
Simple, clear, and to the point, Probability and Statistics Applications for Environmental Science delineates the fundamentals of statistics, imparting a basic understanding of the theory and mechanics of the calculations. User-friendliness, uncomplicated explanations, and coverage of example applications in the environmental field set this book ap
Author | : Michael A. Bean |
Publisher | : American Mathematical Soc. |
Total Pages | : 464 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 0821847929 |
Covers the basic probability of distributions with an emphasis on applications from the areas of investments, insurance, and engineering. This book is suitable as a text for senior undergraduate and beginning graduate students in mathematics, statistics, actuarial science, finance, or engineering.