Probability Measures On Semigroups
Download Probability Measures On Semigroups full books in PDF, epub, and Kindle. Read online free Probability Measures On Semigroups ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Göran Högnäs |
Publisher | : Springer Science & Business Media |
Total Pages | : 438 |
Release | : 2010-11-02 |
Genre | : Mathematics |
ISBN | : 038777548X |
This second edition presents up-to-date material on the theory of weak convergance of convolution products of probability measures in semigroups, the theory of random walks on semigroups, and their applications to products of random matrices. In addition, this unique work examines the essentials of abstract semigroup theory and its application to concrete semigroups of matrices. This substantially revised text includes exercises at various levels at the end of each section and includes the best available proofs on the most important theorems used in a book, making it suitable for a one semester course on semigroups. In addition, it could also be used as a main text or supplementary material for courses focusing on probability on algebraic structures or weak convergance. This book is ideally suited to graduate students in mathematics, and students in other fields, such as engineering and the sciences with an interest in probability. Students in statistics using advanced probability will also find this book useful.
Author | : Göran Högnäs |
Publisher | : Springer Science & Business Media |
Total Pages | : 399 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475723881 |
A Scientific American article on chaos, see Crutchfield et al. (1986), illus trates a very persuasive example of recurrence. A painting of Henri Poincare, or rather a digitized version of it, is stretched and cut to produce a mildly distorted image of Poincare. The same procedure is applied to the distorted image and the process is repeated over and over again on the successively more and more blurred images. After a dozen repetitions nothing seems to be left of the original portrait. Miraculously, structured images appear briefly as we continue to apply the distortion procedure to successive images. After 241 iterations the original picture reappears, unchanged! Apparently the pixels of the Poincare portrait were moving about in accor dance with a strictly deterministic rule. More importantly, the set of all pixels, the whole portrait, was transformed by the distortion mechanism. In this exam ple the transformation seems to have been a reversible one since the original was faithfully recreated. It is not very farfetched to introduce a certain amount of randomness and irreversibility in the above example. Think of a random miscoloring of some pixels or of inadvertently giving a pixel the color of its neighbor. The methods in this book are geared towards being applicable to the asymp totics of such transformation processes. The transformations form a semigroup in a natural way; we want to investigate the long-term behavior of random elements of this semigroup.
Author | : H. Heyer |
Publisher | : Springer Science & Business Media |
Total Pages | : 542 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642667066 |
Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.
Author | : David Applebaum |
Publisher | : Springer |
Total Pages | : 236 |
Release | : 2014-06-26 |
Genre | : Mathematics |
ISBN | : 3319078429 |
Probability theory on compact Lie groups deals with the interaction between “chance” and “symmetry,” a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects.
Author | : H. Heyer |
Publisher | : Springer |
Total Pages | : 366 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540354069 |
Author | : David Applebaum |
Publisher | : Cambridge University Press |
Total Pages | : 235 |
Release | : 2019-08-15 |
Genre | : Mathematics |
ISBN | : 1108483097 |
Provides a graduate-level introduction to the theory of semigroups of operators.
Author | : H. Heyer |
Publisher | : Springer |
Total Pages | : 599 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540388745 |
Author | : A. Mukherjea |
Publisher | : Springer |
Total Pages | : 203 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540379800 |
Author | : Herbert Heyer |
Publisher | : Springer |
Total Pages | : 446 |
Release | : 2006-11-14 |
Genre | : Mathematics |
ISBN | : 3540462066 |
The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.
Author | : Walter R. Bloom |
Publisher | : Walter de Gruyter |
Total Pages | : 609 |
Release | : 2011-04-20 |
Genre | : Mathematics |
ISBN | : 3110877597 |
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.