Probability For Physicists
Download Probability For Physicists full books in PDF, epub, and Kindle. Read online free Probability For Physicists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Simon Širca |
Publisher | : Springer |
Total Pages | : 415 |
Release | : 2016-05-20 |
Genre | : Science |
ISBN | : 3319316117 |
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.
Author | : Simon Širca |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-05-30 |
Genre | : Science |
ISBN | : 9783319316093 |
This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.
Author | : Yemima Ben-Menahem |
Publisher | : Springer Science & Business Media |
Total Pages | : 325 |
Release | : 2012-01-25 |
Genre | : Science |
ISBN | : 3642213286 |
What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.
Author | : Carlos Maña |
Publisher | : Springer |
Total Pages | : 252 |
Release | : 2017-04-21 |
Genre | : Science |
ISBN | : 3319557386 |
This book comprehensively presents the basic concepts of probability and Bayesian inference with sufficient generality to make them applicable to current problems in scientific research. The first chapter provides the fundamentals of probability theory that are essential for the analysis of random phenomena. The second chapter includes a full and pragmatic review of the Bayesian methods that constitute a natural and coherent framework with enough freedom to analyze all the information available from experimental data in a conceptually simple manner. The third chapter presents the basic Monte Carlo techniques used in scientific research, allowing a large variety of problems to be handled difficult to tackle by other procedures. The author also introduces a basic algorithm, which enables readers to simulate samples from simple distribution, and describes useful cases for researchers in particle physics.The final chapter is devoted to the basic ideas of Information Theory, which are important in the Bayesian methodology. This highly readable book is appropriate for graduate-level courses, while at the same time being useful for scientific researches in general and for physicists in particular since most of the examples are from the field of Particle Physics.
Author | : Byron P. Roe |
Publisher | : Springer Science & Business Media |
Total Pages | : 219 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 1475721862 |
A practical introduction to the use of probability and statistics in experimental physics for graduate students and advanced undergraduates. Intended as a practical guide, and not as a comprehensive text, the emphasis is on applications and understanding, on theorems and techniques that are actually used in experimental physics. Proofs of theorems are generally omitted unless they contribute to the intuition in understanding and applying the theorem. The problems, many with worked solutions, introduce the student to the use of computers; occasional reference is made to some of the Fortran routines available in the CERN library, but other systems, such as Maple, will also be useful.
Author | : Y. M. Guttmann |
Publisher | : Cambridge University Press |
Total Pages | : 283 |
Release | : 1999-07-13 |
Genre | : Mathematics |
ISBN | : 0521621283 |
A most systematic study of how to interpret probabilistic assertions in the context of statistical mechanics.
Author | : Edwin T. Jaynes |
Publisher | : Springer Science & Business Media |
Total Pages | : 468 |
Release | : 1989-04-30 |
Genre | : Mathematics |
ISBN | : 9780792302131 |
The first six chapters of this volume present the author's 'predictive' or information theoretic' approach to statistical mechanics, in which the basic probability distributions over microstates are obtained as distributions of maximum entropy (Le. , as distributions that are most non-committal with regard to missing information among all those satisfying the macroscopically given constraints). There is then no need to make additional assumptions of ergodicity or metric transitivity; the theory proceeds entirely by inference from macroscopic measurements and the underlying dynamical assumptions. Moreover, the method of maximizing the entropy is completely general and applies, in particular, to irreversible processes as well as to reversible ones. The next three chapters provide a broader framework - at once Bayesian and objective - for maximum entropy inference. The basic principles of inference, including the usual axioms of probability, are seen to rest on nothing more than requirements of consistency, above all, the requirement that in two problems where we have the same information we must assign the same probabilities. Thus, statistical mechanics is viewed as a branch of a general theory of inference, and the latter as an extension of the ordinary logic of consistency. Those who are familiar with the literature of statistics and statistical mechanics will recognize in both of these steps a genuine 'scientific revolution' - a complete reversal of earlier conceptions - and one of no small significance.
Author | : Vinay Ambegaokar |
Publisher | : Courier Dover Publications |
Total Pages | : 259 |
Release | : 2017-01-18 |
Genre | : Science |
ISBN | : 0486807010 |
This book introduces college students and other readers to the uses of probability and statistics in the physical sciences, focusing on thermal and statistical physics and touching upon quantum physics. Widely praised as beautifully written and thoughtful, Reasoning About Luck explains concepts in a way that readers can understand and enjoy, even students who are not specializing in science and those outside the classroom — only some familiarity with basic algebra is necessary. Attentive readers will come away with a solid grasp of many of the basic concepts of physics and some excellent insights into the way physicists think and work. "If students who are not majoring in science understood no more physics than that presented by Ambegaokar, they would have a solid basis for thinking about physics and the other sciences." — Physics Today. "There is a real need for rethinking how we teach thermal physics—at all levels, but especially to undergraduates. Professor Ambegaokar has done just that, and given us an outstanding and ambitious textbook for nonscience majors. I find Professor Ambegaokar's style throughout the book to be graceful and witty, with a nice balance of both encouragement and admonishment." — American Journal of Physics.
Author | : Nicola Cufaro Petroni |
Publisher | : Springer Nature |
Total Pages | : 372 |
Release | : 2020-06-25 |
Genre | : Science |
ISBN | : 3030484084 |
This book seeks to bridge the gap between the parlance, the models, and even the notations used by physicists and those used by mathematicians when it comes to the topic of probability and stochastic processes. The opening four chapters elucidate the basic concepts of probability, including probability spaces and measures, random variables, and limit theorems. Here, the focus is mainly on models and ideas rather than the mathematical tools. The discussion of limit theorems serves as a gateway to extensive coverage of the theory of stochastic processes, including, for example, stationarity and ergodicity, Poisson and Wiener processes and their trajectories, other Markov processes, jump-diffusion processes, stochastic calculus, and stochastic differential equations. All these conceptual tools then converge in a dynamical theory of Brownian motion that compares the Einstein–Smoluchowski and Ornstein–Uhlenbeck approaches, highlighting the most important ideas that finally led to a connection between the Schrödinger equation and diffusion processes along the lines of Nelson’s stochastic mechanics. A series of appendices cover particular details and calculations, and offer concise treatments of particular thought-provoking topics.
Author | : Arak M. Mathai |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 732 |
Release | : 2017-12-18 |
Genre | : Mathematics |
ISBN | : 311056260X |
This book offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, as well as basics of sampling distributions, estimation and hypothesis testing. As a companion for classes for engineers and scientists, the book also covers applied topics such as model building and experiment design. Contents Random phenomena Probability Random variables Expected values Commonly used discrete distributions Commonly used density functions Joint distributions Some multivariate distributions Collection of random variables Sampling distributions Estimation Interval estimation Tests of statistical hypotheses Model building and regression Design of experiments and analysis of variance Questions and answers