Stochastic Analysis and Mathematical Physics

Stochastic Analysis and Mathematical Physics
Author: A.B. Cruzeiro
Publisher: Springer Science & Business Media
Total Pages: 162
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461201276

This volume represents the outgrowth of an ongoing workshop on stochastic analysis held in Lisbon. The nine survey articles in the volume extend concepts from classical probability and stochastic processes to a number of areas of mathematical physics. It is a good reference text for researchers and advanced students in the fields of probability, stochastic processes, analysis, geometry, mathematical physics, and physics. Key topics covered include: nonlinear stochastic wave equations, completely positive maps, Mehler-type semigroups on Hilbert spaces, entropic projections, and many others.

Probability in Physics

Probability in Physics
Author: Yemima Ben-Menahem
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2012-01-25
Genre: Science
ISBN: 3642213286

What is the role and meaning of probability in physical theory, in particular in two of the most successful theories of our age, quantum physics and statistical mechanics? Laws once conceived as universal and deterministic, such as Newton‘s laws of motion, or the second law of thermodynamics, are replaced in these theories by inherently probabilistic laws. This collection of essays by some of the world‘s foremost experts presents an in-depth analysis of the meaning of probability in contemporary physics. Among the questions addressed are: How are probabilities defined? Are they objective or subjective? What is their explanatory value? What are the differences between quantum and classical probabilities? The result is an informative and thought-provoking book for the scientifically inquisitive.

Mathematical Physics

Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
Total Pages: 1052
Release: 2002-02-08
Genre: Science
ISBN: 9780387985794

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.

Probability and Statistics in Experimental Physics

Probability and Statistics in Experimental Physics
Author: Byron P. Roe
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2013-03-09
Genre: Science
ISBN: 1475721862

A practical introduction to the use of probability and statistics in experimental physics for graduate students and advanced undergraduates. Intended as a practical guide, and not as a comprehensive text, the emphasis is on applications and understanding, on theorems and techniques that are actually used in experimental physics. Proofs of theorems are generally omitted unless they contribute to the intuition in understanding and applying the theorem. The problems, many with worked solutions, introduce the student to the use of computers; occasional reference is made to some of the Fortran routines available in the CERN library, but other systems, such as Maple, will also be useful.

Mathematical Physics

Mathematical Physics
Author: Donald H. Menzel
Publisher: Courier Corporation
Total Pages: 434
Release: 2012-05-23
Genre: Science
ISBN: 0486139107

Useful treatment of classical mechanics, electromagnetic theory, and relativity includes explanations of function theory, vectors, matrices, dyadics, tensors, partial differential equations, other advanced mathematical techniques. Nearly 200 problems with answers.

Quantum Probability and Spectral Analysis of Graphs

Quantum Probability and Spectral Analysis of Graphs
Author: Akihito Hora
Publisher: Springer Science & Business Media
Total Pages: 384
Release: 2007-07-05
Genre: Science
ISBN: 3540488634

This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.

Analysis, Probability and Mathematical Physics on Fractals

Analysis, Probability and Mathematical Physics on Fractals
Author: Patricia Alonso Ruiz
Publisher:
Total Pages: 573
Release: 2020
Genre: Electronic books
ISBN: 9789811215537

"In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature? This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results"--Publisher's website.

Probability for Physicists

Probability for Physicists
Author: Simon Širca
Publisher: Springer
Total Pages: 415
Release: 2016-05-20
Genre: Science
ISBN: 3319316117

This book is designed as a practical and intuitive introduction to probability, statistics and random quantities for physicists. The book aims at getting to the main points by a clear, hands-on exposition supported by well-illustrated and worked-out examples. A strong focus on applications in physics and other natural sciences is maintained throughout. In addition to basic concepts of random variables, distributions, expected values and statistics, the book discusses the notions of entropy, Markov processes, and fundamentals of random number generation and Monte-Carlo methods.

Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics
Author: Grigori N. Milstein
Publisher: Springer Nature
Total Pages: 754
Release: 2021-12-03
Genre: Computers
ISBN: 3030820408

This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.

Probability in Physics

Probability in Physics
Author: Andy Lawrence
Publisher: Springer Nature
Total Pages: 361
Release: 2019-09-01
Genre: Science
ISBN: 3030045447

This textbook presents an introduction to the use of probability in physics, treating introductory ideas of both statistical physics and of statistical inference, as well the importance of probability in information theory, quantum mechanics, and stochastic processes, in a unified manner. The book also presents a harmonised view of frequentist and Bayesian approaches to inference, emphasising their complementary value. The aim is to steer a middle course between the "cookbook" style and an overly dry mathematical statistics style. The treatment is driven by real physics examples throughout, but developed with a level of mathematical clarity and rigour appropriate to mid-career physics undergraduates. Exercises and solutions are included.