Probability And Algorithms
Download Probability And Algorithms full books in PDF, epub, and Kindle. Read online free Probability And Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Michael Mitzenmacher |
Publisher | : Cambridge University Press |
Total Pages | : 372 |
Release | : 2005-01-31 |
Genre | : Computers |
ISBN | : 9780521835404 |
Randomization and probabilistic techniques play an important role in modern computer science, with applications ranging from combinatorial optimization and machine learning to communication networks and secure protocols. This 2005 textbook is designed to accompany a one- or two-semester course for advanced undergraduates or beginning graduate students in computer science and applied mathematics. It gives an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algorithms and analyses. It assumes only an elementary background in discrete mathematics and gives a rigorous yet accessible treatment of the material, with numerous examples and applications. The first half of the book covers core material, including random sampling, expectations, Markov's inequality, Chevyshev's inequality, Chernoff bounds, the probabilistic method and Markov chains. The second half covers more advanced topics such as continuous probability, applications of limited independence, entropy, Markov chain Monte Carlo methods and balanced allocations. With its comprehensive selection of topics, along with many examples and exercises, this book is an indispensable teaching tool.
Author | : John H. Drew |
Publisher | : Springer Science & Business Media |
Total Pages | : 220 |
Release | : 2008-01-08 |
Genre | : Mathematics |
ISBN | : 0387746765 |
This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.
Author | : David Aldous |
Publisher | : Springer Science & Business Media |
Total Pages | : 169 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461208017 |
Discrete probability theory and the theory of algorithms have become close partners over the last ten years, though the roots of this partnership go back much longer. The papers in this volume address the latest developments in this active field. They are from the IMA Workshops "Probability and Algorithms" and "The Finite Markov Chain Renaissance." They represent the current thinking of many of the world's leading experts in the field. Researchers and graduate students in probability, computer science, combinatorics, and optimization theory will all be interested in this collection of articles. The techniques developed and surveyed in this volume are still undergoing rapid development, and many of the articles of the collection offer an expositionally pleasant entree into a research area of growing importance.
Author | : Michel Habib |
Publisher | : Springer Science & Business Media |
Total Pages | : 342 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 3662127881 |
Leave nothing to chance. This cliche embodies the common belief that ran domness has no place in carefully planned methodologies, every step should be spelled out, each i dotted and each t crossed. In discrete mathematics at least, nothing could be further from the truth. Introducing random choices into algorithms can improve their performance. The application of proba bilistic tools has led to the resolution of combinatorial problems which had resisted attack for decades. The chapters in this volume explore and celebrate this fact. Our intention was to bring together, for the first time, accessible discus sions of the disparate ways in which probabilistic ideas are enriching discrete mathematics. These discussions are aimed at mathematicians with a good combinatorial background but require only a passing acquaintance with the basic definitions in probability (e.g. expected value, conditional probability). A reader who already has a firm grasp on the area will be interested in the original research, novel syntheses, and discussions of ongoing developments scattered throughout the book. Some of the most convincing demonstrations of the power of these tech niques are randomized algorithms for estimating quantities which are hard to compute exactly. One example is the randomized algorithm of Dyer, Frieze and Kannan for estimating the volume of a polyhedron. To illustrate these techniques, we consider a simple related problem. Suppose S is some region of the unit square defined by a system of polynomial inequalities: Pi (x. y) ~ o.
Author | : Micha Hofri |
Publisher | : Springer Science & Business Media |
Total Pages | : 254 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461248000 |
Probabilistic Analysis of Algorithms begins with a presentation of the "tools of the trade" currently used in probabilistic analyses, and continues with an applications section in which these tools are used in the analysis ofr selected algorithms. The tools section of the book provides the reader with an arsenal of analytic and numeric computing methods which are then applied to several groups of algorithms to analyze their running time or storage requirements characteristics. Topics covered in the applications section include sorting, communications network protocols and bin packing. While the discussion of the various algorithms is sufficient to motivate their structure, the emphasis throughout is on the probabilistic estimation of their operation under distributional assumptions on their input. Probabilistic Analysis of Algorithms assumes a working knowledge of engineering mathematics, drawing on real and complex analysis, combinatorics and probability theory. While the book is intended primarily as a text for the upper undergraduate and graduate student levels, it contains a wealth of material and should also prove an important reference for researchers. As such it is addressed to computer scientists, mathematicians, operations researchers, and electrical and industrial engineers who are interested in evaluating the probable operation of algorithms, rather than their worst-case behavior.
Author | : Rajeev Motwani |
Publisher | : Cambridge University Press |
Total Pages | : 496 |
Release | : 1995-08-25 |
Genre | : Computers |
ISBN | : 1139643134 |
For many applications a randomized algorithm is either the simplest algorithm available, or the fastest, or both. This tutorial presents the basic concepts in the design and analysis of randomized algorithms. The first part of the book presents tools from probability theory and probabilistic analysis that are recurrent in algorithmic applications. Algorithmic examples are given to illustrate the use of each tool in a concrete setting. In the second part of the book, each of the seven chapters focuses on one important area of application of randomized algorithms: data structures; geometric algorithms; graph algorithms; number theory; enumeration; parallel algorithms; and on-line algorithms. A comprehensive and representative selection of the algorithms in these areas is also given. This book should prove invaluable as a reference for researchers and professional programmers, as well as for students.
Author | : Noga Alon |
Publisher | : John Wiley & Sons |
Total Pages | : 396 |
Release | : 2015-11-02 |
Genre | : Mathematics |
ISBN | : 1119062071 |
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Author | : Devdatt P. Dubhashi |
Publisher | : Cambridge University Press |
Total Pages | : 213 |
Release | : 2009-06-15 |
Genre | : Computers |
ISBN | : 1139480995 |
Randomized algorithms have become a central part of the algorithms curriculum, based on their increasingly widespread use in modern applications. This book presents a coherent and unified treatment of probabilistic techniques for obtaining high probability estimates on the performance of randomized algorithms. It covers the basic toolkit from the Chernoff–Hoeffding bounds to more sophisticated techniques like martingales and isoperimetric inequalities, as well as some recent developments like Talagrand's inequality, transportation cost inequalities and log-Sobolev inequalities. Along the way, variations on the basic theme are examined, such as Chernoff–Hoeffding bounds in dependent settings. The authors emphasise comparative study of the different methods, highlighting respective strengths and weaknesses in concrete example applications. The exposition is tailored to discrete settings sufficient for the analysis of algorithms, avoiding unnecessary measure-theoretic details, thus making the book accessible to computer scientists as well as probabilists and discrete mathematicians.
Author | : Martin Pelikan |
Publisher | : Springer Science & Business Media |
Total Pages | : 363 |
Release | : 2006-09-25 |
Genre | : Mathematics |
ISBN | : 3540349537 |
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.
Author | : Andrii Gakhov |
Publisher | : BoD – Books on Demand |
Total Pages | : 224 |
Release | : 2022-08-05 |
Genre | : Computers |
ISBN | : 3748190484 |
A technical book about popular space-efficient data structures and fast algorithms that are extremely useful in modern Big Data applications. The purpose of this book is to introduce technology practitioners, including software architects and developers, as well as technology decision makers to probabilistic data structures and algorithms. Reading this book, you will get a theoretical and practical understanding of probabilistic data structures and learn about their common uses.