Probability-1

Probability-1
Author: Albert N. Shiryaev
Publisher: Springer
Total Pages: 501
Release: 2016-07-08
Genre: Mathematics
ISBN: 0387722068

Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.

Probability and Statistics

Probability and Statistics
Author: Michael J. Evans
Publisher: Macmillan
Total Pages: 704
Release: 2004
Genre: Mathematics
ISBN: 9780716747420

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Probability

Probability
Author: Albert Shiryaev
Publisher: Springer Science & Business Media
Total Pages: 636
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475725396

In the Preface to the first edition, originally published in 1980, we mentioned that this book was based on the author's lectures in the Department of Mechanics and Mathematics of the Lomonosov University in Moscow, which were issued, in part, in mimeographed form under the title "Probabil ity, Statistics, and Stochastic Processors, I, II" and published by that Univer sity. Our original intention in writing the first edition of this book was to divide the contents into three parts: probability, mathematical statistics, and theory of stochastic processes, which corresponds to an outline of a three semester course of lectures for university students of mathematics. However, in the course of preparing the book, it turned out to be impossible to realize this intention completely, since a full exposition would have required too much space. In this connection, we stated in the Preface to the first edition that only probability theory and the theory of random processes with discrete time were really adequately presented. Essentially all of the first edition is reproduced in this second edition. Changes and corrections are, as a rule, editorial, taking into account com ments made by both Russian and foreign readers of the Russian original and ofthe English and Germantranslations [Sll]. The author is grateful to all of these readers for their attention, advice, and helpful criticisms. In this second English edition, new material also has been added, as follows: in Chapter 111, §5, §§7-12; in Chapter IV, §5; in Chapter VII, §§8-10.

Probability and Bayesian Modeling

Probability and Bayesian Modeling
Author: Jim Albert
Publisher: CRC Press
Total Pages: 553
Release: 2019-12-06
Genre: Mathematics
ISBN: 1351030132

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.

Introduction to Probability

Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
Total Pages: 447
Release: 2017-11-02
Genre: Mathematics
ISBN: 110824498X

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Introduction to Probability

Introduction to Probability
Author: Joseph K. Blitzstein
Publisher: CRC Press
Total Pages: 599
Release: 2014-07-24
Genre: Mathematics
ISBN: 1466575573

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.

Problems in Probability

Problems in Probability
Author: Albert N. Shiryaev
Publisher: Springer Science & Business Media
Total Pages: 432
Release: 2012-08-07
Genre: Mathematics
ISBN: 1461436885

For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here.

Introduction to Probability

Introduction to Probability
Author: John E. Freund
Publisher: Courier Corporation
Total Pages: 276
Release: 2012-05-11
Genre: Mathematics
ISBN: 0486158438

Featured topics include permutations and factorials, probabilities and odds, frequency interpretation, mathematical expectation, decision making, postulates of probability, rule of elimination, much more. Exercises with some solutions. Summary. 1973 edition.

The Probability Tutoring Book

The Probability Tutoring Book
Author: Carol Ash
Publisher: Wiley-IEEE Press
Total Pages: 0
Release: 1996-11-14
Genre: Mathematics
ISBN: 9780780310513

A self-study guide for practicing engineers, scientists, and students, this book offers practical, worked-out examples on continuous and discrete probability for problem-solving courses. It is filled with handy diagrams, examples, and solutions that greatly aid in the comprehension of a variety of probability problems.

Probability with Statistical Applications

Probability with Statistical Applications
Author: Rinaldo B. Schinazi
Publisher: Springer Nature
Total Pages: 354
Release: 2022-02-26
Genre: Mathematics
ISBN: 303093635X

This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.