Foundations of Probabilistic Programming

Foundations of Probabilistic Programming
Author: Gilles Barthe
Publisher: Cambridge University Press
Total Pages: 583
Release: 2020-12-03
Genre: Computers
ISBN: 110848851X

This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.

Bayesian Methods for Hackers

Bayesian Methods for Hackers
Author: Cameron Davidson-Pilon
Publisher: Addison-Wesley Professional
Total Pages: 551
Release: 2015-09-30
Genre: Computers
ISBN: 0133902927

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Foundations of Probabilistic Logic Programming

Foundations of Probabilistic Logic Programming
Author: Fabrizio Riguzzi
Publisher: CRC Press
Total Pages: 548
Release: 2023-07-07
Genre: Computers
ISBN: 1000923215

Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.

Probabilistic Programming

Probabilistic Programming
Author: S. Vajda
Publisher: Academic Press
Total Pages: 140
Release: 2014-07-03
Genre: Mathematics
ISBN: 1483268373

Probabilistic Programming discusses a high-level language known as probabilistic programming. This book consists of three chapters. Chapter I deals with "wait-and-see problems that require waiting until an observation is made on the random elements, while Chapter II contains the analysis of decision problems, particularly of so-called two-stage problems. The last chapter focuses on "chance constraints, such as constraints that are not expected to be always satisfied, but only in a proportion of cases or "with given probabilities. This text specifically deliberates the decision regions for optimality, probability distributions, Kall's Theorem, and two-stage programming under uncertainty. The complete problem, active approach, quantile rules, randomized decisions, and nonzero order rules are also covered. This publication is suitable for developers aiming to define and automatically solve probability models.

Abstraction, Refinement and Proof for Probabilistic Systems

Abstraction, Refinement and Proof for Probabilistic Systems
Author: Annabelle McIver
Publisher: Springer Science & Business Media
Total Pages: 412
Release: 2005
Genre: Computers
ISBN: 9780387401157

Provides an integrated coverage of random/probabilistic algorithms, assertion-based program reasoning, and refinement programming models, providing a focused survey on probabilistic program semantics. This book illustrates, by examples, the typical steps necessary to build a mathematical model of any programming paradigm.

Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python
Author: Osvaldo A. Martin
Publisher: CRC Press
Total Pages: 420
Release: 2021-12-28
Genre: Computers
ISBN: 1000520048

Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.

Probabilistic Machine Learning

Probabilistic Machine Learning
Author: Kevin P. Murphy
Publisher: MIT Press
Total Pages: 858
Release: 2022-03-01
Genre: Computers
ISBN: 0262369303

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Bayesian Programming

Bayesian Programming
Author: Pierre Bessiere
Publisher: CRC Press
Total Pages: 380
Release: 2013-12-20
Genre: Business & Economics
ISBN: 1439880336

Probability as an Alternative to Boolean LogicWhile logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in natur

Foundations of Probabilistic Programming

Foundations of Probabilistic Programming
Author: Gilles Barthe
Publisher: Cambridge University Press
Total Pages:
Release: 2020-12-03
Genre: Computers
ISBN: 1108805744

What does a probabilistic program actually compute? How can one formally reason about such probabilistic programs? This valuable guide covers such elementary questions and more. It provides a state-of-the-art overview of the theoretical underpinnings of modern probabilistic programming and their applications in machine learning, security, and other domains, at a level suitable for graduate students and non-experts in the field. In addition, the book treats the connection between probabilistic programs and mathematical logic, security (what is the probability that software leaks confidential information?), and presents three programming languages for different applications: Excel tables, program testing, and approximate computing. This title is also available as Open Access on Cambridge Core.

Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming
Author: Luc De Raedt
Publisher: Springer
Total Pages: 348
Release: 2008-02-26
Genre: Computers
ISBN: 354078652X

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.