Principles of Statistics for Engineers and Scientists

Principles of Statistics for Engineers and Scientists
Author: William Cyrus Navidi
Publisher: College Ie Overruns
Total Pages: 582
Release: 2010
Genre: Engineering
ISBN: 9780070166974

Principles of Statistics for Engineers and Scientists offers the same crystal clear presentation of applied statistics as Bill Navidi's Statistics for Engineers and Scientists text, in a manner especially designed for the needs of a one-semester course that is focused on applications. By presenting ideas in the context of real-world data sets and with plentiful examples of computer output, the book is great for motivating students to understand the importance of statistics in their careers and their lives. The text features a unique approach highlighted by an engaging writing style that explains difficult concepts clearly and the use of contemporary real world data sets to help motivate students and show direct connections to industry and research. While focusing on practical applications of statistics, the text makes extensive use of examples to motivate fundamental concepts and to develop intuition.

Principles of Applied Statistics

Principles of Applied Statistics
Author: D. R. Cox
Publisher: Cambridge University Press
Total Pages: 213
Release: 2011-07-28
Genre: Mathematics
ISBN: 1139503545

Applied statistics is more than data analysis, but it is easy to lose sight of the big picture. David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation. As you advance from research or policy question, to study design, through modelling and interpretation, and finally to meaningful conclusions, this book will be a valuable guide. Over a hundred illustrations from a wide variety of real applications make the conceptual points concrete, illuminating your path and deepening your understanding. This book is essential reading for anyone who makes extensive use of statistical methods in their work.

The Principles of Statistical Mechanics

The Principles of Statistical Mechanics
Author: Richard Chace Tolman
Publisher: Courier Corporation
Total Pages: 700
Release: 1979-01-01
Genre: Science
ISBN: 9780486638966

This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.

Principles of Statistical Data Handling

Principles of Statistical Data Handling
Author: Fred Davidson
Publisher: SAGE Publications, Incorporated
Total Pages: 344
Release: 1996-04-09
Genre: Education
ISBN:

Principles of Statistical Data Handling is designed to help readers understand the principles of data handling so that they can make better use of computer data in research or study.

Principles of Statistical Inference

Principles of Statistical Inference
Author: D. R. Cox
Publisher: Cambridge University Press
Total Pages: 227
Release: 2006-08-10
Genre: Mathematics
ISBN: 1139459139

In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications across the sciences and associated technologies. The mathematics is kept as elementary as feasible, though previous knowledge of statistics is assumed. The book will be valued by every user or student of statistics who is serious about understanding the uncertainty inherent in conclusions from statistical analyses.

Principles of Managerial Statistics and Data Science

Principles of Managerial Statistics and Data Science
Author: Roberto Rivera
Publisher: John Wiley & Sons
Total Pages: 688
Release: 2020-02-05
Genre: Mathematics
ISBN: 1119486416

Introduces readers to the principles of managerial statistics and data science, with an emphasis on statistical literacy of business students Through a statistical perspective, this book introduces readers to the topic of data science, including Big Data, data analytics, and data wrangling. Chapters include multiple examples showing the application of the theoretical aspects presented. It features practice problems designed to ensure that readers understand the concepts and can apply them using real data. Over 100 open data sets used for examples and problems come from regions throughout the world, allowing the instructor to adapt the application to local data with which students can identify. Applications with these data sets include: Assessing if searches during a police stop in San Diego are dependent on driver’s race Visualizing the association between fat percentage and moisture percentage in Canadian cheese Modeling taxi fares in Chicago using data from millions of rides Analyzing mean sales per unit of legal marijuana products in Washington state Topics covered in Principles of Managerial Statistics and Data Science include:data visualization; descriptive measures; probability; probability distributions; mathematical expectation; confidence intervals; and hypothesis testing. Analysis of variance; simple linear regression; and multiple linear regression are also included. In addition, the book offers contingency tables, Chi-square tests, non-parametric methods, and time series methods. The textbook: Includes academic material usually covered in introductory Statistics courses, but with a data science twist, and less emphasis in the theory Relies on Minitab to present how to perform tasks with a computer Presents and motivates use of data that comes from open portals Focuses on developing an intuition on how the procedures work Exposes readers to the potential in Big Data and current failures of its use Supplementary material includes: a companion website that houses PowerPoint slides; an Instructor's Manual with tips, a syllabus model, and project ideas; R code to reproduce examples and case studies; and information about the open portal data Features an appendix with solutions to some practice problems Principles of Managerial Statistics and Data Science is a textbook for undergraduate and graduate students taking managerial Statistics courses, and a reference book for working business professionals.

Principles of Medical Statistics

Principles of Medical Statistics
Author: Alvan R. Feinstein
Publisher: CRC Press
Total Pages: 713
Release: 2001-09-14
Genre: Mathematics
ISBN: 1420035681

The get-it-over-with-quickly approach to statistics has been encouraged - and often necessitated - by the short time allotted to it in most curriculums. If included at all, statistics is presented briefly, as a task to be endured mainly because pertinent questions may appear in subsequent examinations for licensure or other certifications. However,

Principles of Statistics

Principles of Statistics
Author: M. G. Bulmer
Publisher: Courier Corporation
Total Pages: 260
Release: 2012-04-26
Genre: Mathematics
ISBN: 0486135209

Concise description of classical statistics, from basic dice probabilities to modern regression analysis. Equal stress on theory and applications. Moderate difficulty; only basic calculus required. Includes problems with answers.

Fundamental Statistical Principles for the Neurobiologist

Fundamental Statistical Principles for the Neurobiologist
Author: Stephen W. Scheff
Publisher: Academic Press
Total Pages: 236
Release: 2016-02-11
Genre: Science
ISBN: 0128050519

Fundamental Statistical Principles for Neurobiologists introduces readers to basic experimental design and statistical thinking in a comprehensive, relevant manner. This book is an introductory statistics book that covers fundamental principles written by a neuroscientist who understands the plight of the neuroscience graduate student and the senior investigator. It summarizes the fundamental concepts associated with statistical analysis that are useful for the neuroscientist, and provides understanding of a particular test in language that is more understandable to this specific audience, with the overall purpose of explaining which statistical technique should be used in which situation. Different types of data are discussed such as how to formulate a research hypothesis, the primary types of statistical errors and statistical power, followed by how to actually graph data and what kinds of mistakes to avoid. Chapters discuss variance, standard deviation, standard error, mean, confidence intervals, correlation, regression, parametric vs. nonparametric statistical tests, ANOVA, and post hoc analyses. Finally, there is a discussion on how to deal with data points that appear to be "outliers" and what to do when there is missing data, an issue that has not sufficiently been covered in literature. - An introductory guide to statistics aimed specifically at the neuroscience audience - Contains numerous examples with actual data that is used in the analysis - Gives the investigators a starting pointing for evaluating data in easy-to-understand language - Explains in detail many different statistical tests commonly used by neuroscientists