Forecasting: principles and practice

Forecasting: principles and practice
Author: Rob J Hyndman
Publisher: OTexts
Total Pages: 380
Release: 2018-05-08
Genre: Business & Economics
ISBN: 0987507117

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Principles of Business Forecasting--2nd Ed

Principles of Business Forecasting--2nd Ed
Author: Keith Ord
Publisher: Wessex, Incorporated
Total Pages: 588
Release: 2017-06
Genre: Business forecasting
ISBN: 9780999064917

This second edition of Principles of Business Forecasting by Keith Ord, Robert Fildes, and newest author Nikolaos Kourentzes serves as both a textbook for students and as a reference book for experienced forecasters in a variety of fields. The authors' motivation for writing this book, is to give users the tools and insight to make the most effective forecasts drawing on the latest research ideas, without being overly technical. The book is unique in its design, providing an introduction to both standard and advanced forecasting methods, as well as a focus on general principles to guide and simplify forecasting practice for those with little or no professional experience. One of the book's key strengths is the emphasis on real data sets, which have been updated in this second edition. These data sets are taken from government and business sources and are used throughout in the chapter examples and exercises. Forecasting techniques are demonstrated using a variety of software platforms beyond just "R," and a companion website provides easy-to-use Excel(R) macros that users can access to conduct analyses. Another important innovation in the second edition is the tutorial support for using open-source R programs, making all the methods available for use both in courses and practice. After the introductory chapters, the focus shifts to using extrapolative methods (exponential smoothing and ARIMA), then to statistical model-building using multiple regression. The authors also cover more novel techniques including data mining and judgmental methods, which are gaining increasing attention in applications. The second edition also offers expanded material on data analytics, in particular neural nets together with software, and applications that include new research findings relevant and immediately applicable to operations, such as hierarchical modeling and temporal aggregation. Finally, the authors examine organizational issues of implementation and the development of a forecasting support system within an organization; relevant to every manager, or future manager, who must make plans or decisions based on forecasts. Please take a moment to review the companion website for additional content in the Appendices (Basic Statistical Concepts, overview of Forecasting Software, and Forecasting in R: Tutorial and Examples) the many data sets referenced in the chapters, macros such as the Exponential Smoothing and Trend Curve Marcos and Time Series Neural Network Analysis and student study materials.

Principles of Forecasting

Principles of Forecasting
Author: J.S. Armstrong
Publisher: Springer Science & Business Media
Total Pages: 880
Release: 2001
Genre: Business & Economics
ISBN: 9780792374015

This handbook summarises knowledge from experts and empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. Includes a comprehensive forecasting dictionary.

Business Forecasting

Business Forecasting
Author: Michael Gilliland
Publisher: John Wiley & Sons
Total Pages: 435
Release: 2021-05-11
Genre: Business & Economics
ISBN: 1119782473

Discover the role of machine learning and artificial intelligence in business forecasting from some of the brightest minds in the field In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning accomplished authors Michael Gilliland, Len Tashman, and Udo Sglavo deliver relevant and timely insights from some of the most important and influential authors in the field of forecasting. You'll learn about the role played by machine learning and AI in the forecasting process and discover brand-new research, case studies, and thoughtful discussions covering an array of practical topics. The book offers multiple perspectives on issues like monitoring forecast performance, forecasting process, communication and accountability for forecasts, and the use of big data in forecasting. You will find: Discussions on deep learning in forecasting, including current trends and challenges Explorations of neural network-based forecasting strategies A treatment of the future of artificial intelligence in business forecasting Analyses of forecasting methods, including modeling, selection, and monitoring In addition to the Foreword by renowned researchers Spyros Makridakis and Fotios Petropoulos, the book also includes 16 "opinion/editorial" Afterwords by a diverse range of top academics, consultants, vendors, and industry practitioners, each providing their own unique vision of the issues, current state, and future direction of business forecasting. Perfect for financial controllers, chief financial officers, business analysts, forecast analysts, and demand planners, Business Forecasting will also earn a place in the libraries of other executives and managers who seek a one-stop resource to help them critically assess and improve their own organization's forecasting efforts.

Principles of Marketing Engineering, 2nd Edition

Principles of Marketing Engineering, 2nd Edition
Author: Gary L. Lilien
Publisher: DecisionPro
Total Pages: 287
Release: 2013
Genre: Business & Economics
ISBN: 0985764805

The 21st century business environment demands more analysis and rigor in marketing decision making. Increasingly, marketing decision making resembles design engineering-putting together concepts, data, analyses, and simulations to learn about the marketplace and to design effective marketing plans. While many view traditional marketing as art and some view it as science, the new marketing increasingly looks like engineering (that is, combining art and science to solve specific problems). Marketing Engineering is the systematic approach to harness data and knowledge to drive effective marketing decision making and implementation through a technology-enabled and model-supported decision process. (For more information on Excel-based models that support these concepts, visit DecisionPro.biz.) We have designed this book primarily for the business school student or marketing manager, who, with minimal background and technical training, must understand and employ the basic tools and models associated with Marketing Engineering. We offer an accessible overview of the most widely used marketing engineering concepts and tools and show how they drive the collection of the right data and information to perform the right analyses to make better marketing plans, better product designs, and better marketing decisions. What's New In the 2nd Edition While much has changed in the nearly five years since the first edition of Principles of Marketing Engineering was published, much has remained the same. Hence, we have not changed the basic structure or contents of the book. We have, however Updated the examples and references. Added new content on customer lifetime value and customer valuation methods. Added several new pricing models. Added new material on "reverse perceptual mapping" to describe some exciting enhancements to our Marketing Engineering for Excel software. Provided some new perspectives on the future of Marketing Engineering. Provided better alignment between the content of the text and both the software and cases available with Marketing Engineering for Excel 2.0.

Business Forecasting, Second Edition

Business Forecasting, Second Edition
Author: A. Reza Hoshmand
Publisher: Routledge
Total Pages: 382
Release: 2009-12-04
Genre: Business & Economics
ISBN: 1135257132

This book emphasizes the rationale, application, and interpretation of the most commonly used forecasting techniques in business.

Statistics for Business

Statistics for Business
Author: Derek Waller
Publisher: Routledge
Total Pages: 523
Release: 2010-05-14
Genre: Business & Economics
ISBN: 1136363718

Statistical analysis is essential to business decision-making and management, but the underlying theory of data collection, organization and analysis is one of the most challenging topics for business students and practitioners. This user-friendly text and CD-ROM package will help you to develop strong skills in presenting and interpreting statistical information in a business or management environment. Based entirely on using Microsoft Excel rather than more complicated applications, it includes a clear guide to using Excel with the key functions employed in the book, a glossary of terms and equations, plus a section specifically for those readers who feel rusty in basic maths. Each chapter has worked examples and explanations to illustrate the use of statistics in real life scenarios, with databases for the worked examples, cases and answers on the accompanying CD-ROM.

Bayesian Forecasting and Dynamic Models

Bayesian Forecasting and Dynamic Models
Author: Mike West
Publisher: Springer Science & Business Media
Total Pages: 720
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475793650

In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.

Principles of Finance with Excel

Principles of Finance with Excel
Author: Simon Benninga
Publisher: Oxford University Press, USA
Total Pages: 801
Release: 2011
Genre: Business & Economics
ISBN: 9780199755479

Finance is a topic that requires much computation, and in todayĆ¢e(tm)s business world that computation is almost entirely done using Microsoft Excel. Despite this, existing finance textbooks continue to rely heavily on hand calculators, and business school students find that when they leave the academic environment they have to relearn finance using Excel. Addressing this issue, Principles of Finance with Excel is the only introductory finance text that comprehensively integrates Excel into the teaching and practice of finance. The second edition covers the same topics as standard financial textbooks, including portfolios, capital asset pricing models, stock and bond valuation, capital structure, and dividend and optional policy, and can therefore be used in any introductory course. However, this text also introduces Excel as it applies to finance students, demonstrating and explaining the implementation of finance concepts with Excel, and providing thorough coverage of all Excel topics including graphs, function data tables, dates in Excel, Goal Seek, and Solver. Combining classroom-tested pedagogy with the powerful functions of Excel, Simon Benninga, one of the most recognised names in financial modelling, shows students how spreadsheets can provide new and deeper insights into financial decision making.

Financial Forecasting, Analysis, and Modelling

Financial Forecasting, Analysis, and Modelling
Author: Michael Samonas
Publisher: John Wiley & Sons
Total Pages: 242
Release: 2015-01-20
Genre: Business & Economics
ISBN: 1118921097

Risk analysis has become critical to modern financial planning Financial Forecasting, Analysis and Modelling provides a complete framework of long-term financial forecasts in a practical and accessible way, helping finance professionals include uncertainty in their planning and budgeting process. With thorough coverage of financial statement simulation models and clear, concise implementation instruction, this book guides readers step-by-step through the entire projection plan development process. Readers learn the tools, techniques, and special considerations that increase accuracy and smooth the workflow, and develop a more robust analysis process that improves financial strategy. The companion website provides a complete operational model that can be customised to develop financial projections or a range of other key financial measures, giving readers an immediately-applicable tool to facilitate effective decision-making. In the aftermath of the recent financial crisis, the need for experienced financial modelling professionals has steadily increased as organisations rush to adjust to economic volatility and uncertainty. This book provides the deeper level of understanding needed to develop stronger financial planning, with techniques tailored to real-life situations. Develop long-term projection plans using Excel Use appropriate models to develop a more proactive strategy Apply risk and uncertainty projections more accurately Master the Excel Scenario Manager, Sensitivity Analysis, Monte Carlo Simulation, and more Risk plays a larger role in financial planning than ever before, and possible outcomes must be measured before decisions are made. Uncertainty has become a critical component in financial planning, and accuracy demands it be used appropriately. With special focus on uncertainty in modelling and planning, Financial Forecasting, Analysis and Modelling is a comprehensive guide to the mechanics of modern finance.