Prime Ideals in Skew and $q$-Skew Polynomial Rings

Prime Ideals in Skew and $q$-Skew Polynomial Rings
Author: K. R. Goodearl
Publisher: American Mathematical Soc.
Total Pages: 118
Release: 1994
Genre: Mathematics
ISBN: 0821825836

New methods are developed to describe prime ideals in skew polynomial rings [italic capital]S = [italic capital]R[[italic]y; [lowercase Greek]Tau, [lowercase Greek]Delta]], for automorphisms [lowercase Greek]Tau and [lowercase Greek]Tau-derivations [lowercase Greek]Delta] of a noetherian coefficient ring [italic capital]R.

Prime Ideals in Skew and $Q$-Skew Polynomial Rings

Prime Ideals in Skew and $Q$-Skew Polynomial Rings
Author: K. R. Goodearl
Publisher: Oxford University Press, USA
Total Pages: 118
Release: 2014-08-31
Genre: MATHEMATICS
ISBN: 9781470400989

There has been continued interest in skew polynomial rings and related constructions since Ore's initial studies in the 1930s. New examples not covered by previous analyses have arisen in the current study of quantum groups. The aim of this work is to introduce and develop new techniques for understanding the prime ideals in skew polynomial rings $S=R[y;\tau, \delta]$, for automorphisms $\tau$ and $\tau$-derivations $\delta$ of a noetherian coefficient ring $R$. Goodearl and Letzter give particular emphasis to the use of recently developed techniques from the theory of noncommutative noetherian rings. When $R$ is an algebra over a field $k$ on which $\tau$ and $\delta$ act trivially, a complete description of the prime ideals of $S$ is given under the additional assumption that $\tau -1 \delta \tau = q\delta$ for some nonzero $q\in k$. This last hypothesis is an abstraction of behavior found in many quantum algebras, including $q$-Weyl algebras and coordinate rings of quantum matrices, and specific examples along these lines are considered in detail.

Ring Theory - Proceedings Of The Biennial Ohio State-denison Conference 1992

Ring Theory - Proceedings Of The Biennial Ohio State-denison Conference 1992
Author: Surender K Jain
Publisher: World Scientific
Total Pages: 394
Release: 1993-09-30
Genre:
ISBN: 9814553123

This volume consists of a collection of invited papers on the theory of rings and modules, most of which were presented at the biennial Ohio State — Denison Conference, May 1992, in memory of Hans Zassenhaus. The topics of these papers represent many modern trends in Ring Theory. The wide variety of methodologies and techniques demonstrated will be valuable in particular to young researchers in the area. Covering a broad range, this book should appeal to a wide spectrum of researchers in algebra and number theory.

Interactions Between Ring Theory and Representations of Algebras

Interactions Between Ring Theory and Representations of Algebras
Author: Freddy Van Oystaeyen
Publisher: CRC Press
Total Pages: 470
Release: 2000-04-05
Genre: Mathematics
ISBN: 9780824703677

This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.

Algorithmic Methods in Non-Commutative Algebra

Algorithmic Methods in Non-Commutative Algebra
Author: J.L. Bueso
Publisher: Springer Science & Business Media
Total Pages: 307
Release: 2013-03-09
Genre: Computers
ISBN: 9401702853

The already broad range of applications of ring theory has been enhanced in the eighties by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative coordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincaré-Birkhoff-Witt rings. We include algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, etc.

Skew PBW Extensions

Skew PBW Extensions
Author: William Fajardo
Publisher: Springer Nature
Total Pages: 584
Release: 2020-12-11
Genre: Mathematics
ISBN: 3030533786

This monograph is devoted to a new class of non-commutative rings, skew Poincaré–Birkhoff–Witt (PBW) extensions. Beginning with the basic definitions and ring-module theoretic/homological properties, it goes on to investigate finitely generated projective modules over skew PBW extensions from a matrix point of view. To make this theory constructive, the theory of Gröbner bases of left (right) ideals and modules for bijective skew PBW extensions is developed. For example, syzygies and the Ext and Tor modules over these rings are computed. Finally, applications to some key topics in the noncommutative algebraic geometry of quantum algebras are given, including an investigation of semi-graded Koszul algebras and semi-graded Artin–Schelter regular algebras, and the noncommutative Zariski cancellation problem. The book is addressed to researchers in noncommutative algebra and algebraic geometry as well as to graduate students and advanced undergraduate students.

Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups
Author: Ken Brown
Publisher: Birkhäuser
Total Pages: 339
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488205X

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.

Ring Constructions and Applications

Ring Constructions and Applications
Author: Andrei V. Kelarev
Publisher: World Scientific
Total Pages: 218
Release: 2002
Genre: Mathematics
ISBN: 9810247451

This book contains the definitions of several ring constructions used in various applications. The concept of a groupoid-graded ring includes many of these constructions as special cases and makes it possible to unify the exposition. Recent research results on groupoid-graded rings and more specialized constructions are presented. In addition, there is a chapter containing open problems currently considered in the literature. Ring Constructions and Applications can serve as an excellent introduction for graduate students to many ring constructions as well as to essential basic concepts of group, semigroup and ring theories used in proofs.

New Trends in Noncommutative Algebra

New Trends in Noncommutative Algebra
Author: Ara, Pere
Publisher: American Mathematical Soc.
Total Pages: 326
Release: 2012
Genre: Mathematics
ISBN: 0821852973

This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.

Trends in Ring Theory

Trends in Ring Theory
Author: Vlastimil Dlab
Publisher: American Mathematical Soc.
Total Pages: 284
Release: 1998
Genre: Rings (Algebra)
ISBN: 9780821808498

The Ring Theory Conference, held a the University of Miskolc, Hungary, successfully accomplished its two goals: to reflect contemporary trends in the subject area; and to offer a meeting place for a large number of Eastern European algebraists and their colleagues from around the world. Particular emphasis was placed on recent developments in the following four areas: representation theory, group algebras, PI algebras and general ring theory. This book presents 13 of the invited lectures.