Predictive Clustering
Download Predictive Clustering full books in PDF, epub, and Kindle. Read online free Predictive Clustering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hendrik Blockeel |
Publisher | : Springer |
Total Pages | : 240 |
Release | : 2012-05-31 |
Genre | : Computers |
ISBN | : 9781461411468 |
This book introduces a novel paradigm for machine learning and data mining called predictive clustering, which covers a broad variety of learning tasks and offers a fresh perspective on existing techniques. The book presents an informal introduction to predictive clustering, describing learning tasks and settings, and then continues with a formal description of the paradigm, explaining algorithms for learning predictive clustering trees and predictive clustering rules, as well as presenting the applicability of these learning techniques to a broad range of tasks. Variants of decision tree learning algorithms are also introduced. Finally, the book offers several significant applications in ecology and bio-informatics. The book is written in a straightforward and easy-to-understand manner, aimed at varied readership, ranging from researchers with an interest in machine learning techniques to practitioners of data mining technology in the areas of ecology and bioinformatics.
Author | : Sholom M. Weiss |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2010-06-14 |
Genre | : Computers |
ISBN | : 184996226X |
One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Author | : Bertrand S. Clarke |
Publisher | : Cambridge University Press |
Total Pages | : 657 |
Release | : 2018-04-12 |
Genre | : Mathematics |
ISBN | : 1108594204 |
All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.
Author | : Ron Klimberg |
Publisher | : SAS Institute |
Total Pages | : 406 |
Release | : 2017-12-19 |
Genre | : Computers |
ISBN | : 1629608033 |
Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. --
Author | : Rui Xu |
Publisher | : John Wiley & Sons |
Total Pages | : 400 |
Release | : 2008-11-03 |
Genre | : Mathematics |
ISBN | : 0470382783 |
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Author | : Anasse Bari |
Publisher | : John Wiley & Sons |
Total Pages | : 454 |
Release | : 2016-09-16 |
Genre | : Business & Economics |
ISBN | : 1119267013 |
Use Big Data and technology to uncover real-world insights You don't need a time machine to predict the future. All it takes is a little knowledge and know-how, and Predictive Analytics For Dummies gets you there fast. With the help of this friendly guide, you'll discover the core of predictive analytics and get started putting it to use with readily available tools to collect and analyze data. In no time, you'll learn how to incorporate algorithms through data models, identify similarities and relationships in your data, and predict the future through data classification. Along the way, you'll develop a roadmap by preparing your data, creating goals, processing your data, and building a predictive model that will get you stakeholder buy-in. Big Data has taken the marketplace by storm, and companies are seeking qualified talent to quickly fill positions to analyze the massive amount of data that are being collected each day. If you want to get in on the action and either learn or deepen your understanding of how to use predictive analytics to find real relationships between what you know and what you want to know, everything you need is a page away! Offers common use cases to help you get started Covers details on modeling, k-means clustering, and more Includes information on structuring your data Provides tips on outlining business goals and approaches The future starts today with the help of Predictive Analytics For Dummies.
Author | : John D. Kelleher |
Publisher | : MIT Press |
Total Pages | : 853 |
Release | : 2020-10-20 |
Genre | : Computers |
ISBN | : 0262361108 |
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Author | : James Wu |
Publisher | : CRC Press |
Total Pages | : 340 |
Release | : 2012-02-15 |
Genre | : Business & Economics |
ISBN | : 1439869464 |
Drawing on the authors’ two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts. The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish–Fisher expansion and other useful but hard-to-find statistical techniques. It then describes common and unusual linear methods as well as popular nonlinear modeling approaches, including additive models, trees, support vector machine, fuzzy systems, clustering, naïve Bayes, and neural nets. The authors go on to cover methodologies used in time series and forecasting, such as ARIMA, GARCH, and survival analysis. They also present a range of optimization techniques and explore several special topics, such as Dempster–Shafer theory. An in-depth collection of the most important fundamental material on predictive analytics, this self-contained book provides the necessary information for understanding various techniques for exploratory data analysis and modeling. It explains the algorithmic details behind each technique (including underlying assumptions and mathematical formulations) and shows how to prepare and encode data, select variables, use model goodness measures, normalize odds, and perform reject inference. Web Resource The book’s website at www.DataMinerXL.com offers the DataMinerXL software for building predictive models. The site also includes more examples and information on modeling.
Author | : Johannes Fürnkranz |
Publisher | : Springer |
Total Pages | : 371 |
Release | : 2013-09-30 |
Genre | : Computers |
ISBN | : 3642408974 |
This book constitutes the proceedings of the 16th International Conference on Discovery Science, DS 2013, held in Singapore in October 2013, and co-located with the International Conference on Algorithmic Learning Theory, ALT 2013. The 23 papers presented in this volume were carefully reviewed and selected from 52 submissions. They cover recent advances in the development and analysis of methods of automatic scientific knowledge discovery, machine learning, intelligent data analysis, and their application to knowledge discovery.
Author | : Edward W. Frees |
Publisher | : Cambridge University Press |
Total Pages | : 337 |
Release | : 2016-07-27 |
Genre | : Business & Economics |
ISBN | : 1107029880 |
This second volume examines practical real-life applications of predictive modeling to forecast future events with an emphasis on insurance.