Practical Nonparametric And Semiparametric Bayesian Statistics
Download Practical Nonparametric And Semiparametric Bayesian Statistics full books in PDF, epub, and Kindle. Read online free Practical Nonparametric And Semiparametric Bayesian Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dipak D. Dey |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461217326 |
A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.
Author | : Nils Lid Hjort |
Publisher | : Cambridge University Press |
Total Pages | : 309 |
Release | : 2010-04-12 |
Genre | : Mathematics |
ISBN | : 1139484605 |
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Author | : J.K. Ghosh |
Publisher | : Springer Science & Business Media |
Total Pages | : 311 |
Release | : 2006-05-11 |
Genre | : Mathematics |
ISBN | : 0387226540 |
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Author | : Subhashis Ghosal |
Publisher | : Cambridge University Press |
Total Pages | : 671 |
Release | : 2017-06-26 |
Genre | : Business & Economics |
ISBN | : 0521878268 |
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.
Author | : Wolfgang Karl Härdle |
Publisher | : Springer Science & Business Media |
Total Pages | : 317 |
Release | : 2012-08-27 |
Genre | : Mathematics |
ISBN | : 364217146X |
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Author | : Adrian F. M. Smith |
Publisher | : |
Total Pages | : 428 |
Release | : 1994-09-13 |
Genre | : Business & Economics |
ISBN | : |
Throughout his career Dennis Lindley has insisted on thinking things through from first principles and on basing developments on firm, logical foundations. Although his fundamental contributions to Bayesian statistics and decision theory are universally recognised, it is less well known that he arrived at the Bayesian position as a result of seeking to establish a rigorous axiomatic justification for classical statistical procedures.
Author | : Daniel J. Henderson |
Publisher | : Cambridge University Press |
Total Pages | : 381 |
Release | : 2015-01-19 |
Genre | : Business & Economics |
ISBN | : 110701025X |
The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
Author | : Brian J. Reich |
Publisher | : CRC Press |
Total Pages | : 288 |
Release | : 2019-04-12 |
Genre | : Mathematics |
ISBN | : 0429510918 |
Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to priors Frequentist properties of Bayesian methods Case studies covering advanced topics illustrate the flexibility of the Bayesian approach: Semiparametric regression Handling of missing data using predictive distributions Priors for high-dimensional regression models Computational techniques for large datasets Spatial data analysis The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website. Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.
Author | : David Ruppert |
Publisher | : Cambridge University Press |
Total Pages | : 410 |
Release | : 2003-07-14 |
Genre | : Mathematics |
ISBN | : 9780521785167 |
Semiparametric regression is concerned with the flexible incorporation of non-linear functional relationships in regression analyses. Any application area that benefits from regression analysis can also benefit from semiparametric regression. Assuming only a basic familiarity with ordinary parametric regression, this user-friendly book explains the techniques and benefits of semiparametric regression in a concise and modular fashion. The authors make liberal use of graphics and examples plus case studies taken from environmental, financial, and other applications. They include practical advice on implementation and pointers to relevant software. The 2003 book is suitable as a textbook for students with little background in regression as well as a reference book for statistically oriented scientists such as biostatisticians, econometricians, quantitative social scientists, epidemiologists, with a good working knowledge of regression and the desire to begin using more flexible semiparametric models. Even experts on semiparametric regression should find something new here.
Author | : Xiaofeng Wang |
Publisher | : CRC Press |
Total Pages | : 304 |
Release | : 2018-01-29 |
Genre | : Mathematics |
ISBN | : 1351165747 |
INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work. Xiaofeng Wang is Professor of Medicine and Biostatistics at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University and a Full Staff in the Department of Quantitative Health Sciences at Cleveland Clinic. Yu Ryan Yue is Associate Professor of Statistics in the Paul H. Chook Department of Information Systems and Statistics at Baruch College, The City University of New York. Julian J. Faraway is Professor of Statistics in the Department of Mathematical Sciences at the University of Bath.