Practical Applications Of Stochastic Modelling
Download Practical Applications Of Stochastic Modelling full books in PDF, epub, and Kindle. Read online free Practical Applications Of Stochastic Modelling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Howard M. Taylor |
Publisher | : Academic Press |
Total Pages | : 410 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Author | : Matthew Forshaw |
Publisher | : Springer Nature |
Total Pages | : 140 |
Release | : 2023-10-04 |
Genre | : Mathematics |
ISBN | : 3031440536 |
This book constitutes the referred proceedings of the 11th International Workshop on Practical Applications of Stochastic Modelling, PASM 2022, was held in Alicante, Spain, in September 2022. The 7 full papers presented in this volume were carefully reviewed and selected from 9 submissions. The papers demonstrate a diverse set of applications and approaches of stochastic modelling.
Author | : Andreas Diekmann |
Publisher | : Academic Press |
Total Pages | : 352 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483266567 |
Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.
Author | : Uday B. Desai |
Publisher | : Springer Science & Business Media |
Total Pages | : 310 |
Release | : 1986-10-31 |
Genre | : Science |
ISBN | : 9780898381771 |
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Author | : Barry L. Nelson |
Publisher | : Courier Corporation |
Total Pages | : 338 |
Release | : 2012-10-11 |
Genre | : Mathematics |
ISBN | : 0486139948 |
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Author | : |
Publisher | : |
Total Pages | : |
Release | : 2010 |
Genre | : Actuarial science |
ISBN | : 9780981396811 |
Author | : Quan-Lin Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 693 |
Release | : 2011-02-02 |
Genre | : Mathematics |
ISBN | : 364211492X |
"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.
Author | : Huu Tue Huynh |
Publisher | : John Wiley & Sons |
Total Pages | : 354 |
Release | : 2011-11-21 |
Genre | : Business & Economics |
ISBN | : 0470722134 |
Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering. The book takes readers through the basic concepts, covering the most recent research and problems in the area, including: the quadratic re-sampling technique, the Least Squared Method, the dynamic programming and Stratified State Aggregation technique to price American options, the extreme value simulation technique to price exotic options and the retrieval of volatility method to estimate Greeks. The authors also present modern term structure of interest rate models and pricing swaptions with the BGM market model, and give a full explanation of corporate securities valuation and credit risk based on the structural approach of Merton. Case studies on financial guarantees illustrate how to implement the simulation techniques in pricing and hedging. NOTE TO READER: The CD has been converted to URL. Go to the following website www.wiley.com/go/huyhnstochastic which provides MATLAB programs for the practical examples and case studies, which will give the reader confidence in using and adapting specific ways to solve problems involving stochastic processes in finance.
Author | : Darren J. Wilkinson |
Publisher | : CRC Press |
Total Pages | : 366 |
Release | : 2018-12-07 |
Genre | : Mathematics |
ISBN | : 1351000896 |
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Having been thoroughly updated to reflect this, this third edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. New methods and applications are included in the book, and the use of R for practical illustration of the algorithms has been greatly extended. There is a brand new chapter on spatially extended systems, and the statistical inference chapter has also been extended with new methods, including approximate Bayesian computation (ABC). Stochastic Modelling for Systems Biology, Third Edition is now supplemented by an additional software library, written in Scala, described in a new appendix to the book. New in the Third Edition New chapter on spatially extended systems, covering the spatial Gillespie algorithm for reaction diffusion master equation models in 1- and 2-d, along with fast approximations based on the spatial chemical Langevin equation Significantly expanded chapter on inference for stochastic kinetic models from data, covering ABC, including ABC-SMC Updated R package, including code relating to all of the new material New R package for parsing SBML models into simulatable stochastic Petri net models New open-source software library, written in Scala, replicating most of the functionality of the R packages in a fast, compiled, strongly typed, functional language Keeping with the spirit of earlier editions, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.
Author | : J. Michael Steele |
Publisher | : Springer Science & Business Media |
Total Pages | : 303 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1468493051 |
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH