Practical Applications Of Data Mining
Download Practical Applications Of Data Mining full books in PDF, epub, and Kindle. Read online free Practical Applications Of Data Mining ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sang Suh |
Publisher | : Jones & Bartlett Publishers |
Total Pages | : 436 |
Release | : 2012 |
Genre | : Computers |
ISBN | : 0763785873 |
Introduction to data mining -- Association rules -- Classification learning -- Statistics for data mining -- Rough sets and bayes theories -- Neural networks -- Clustering -- Fuzzy information retrieval.
Author | : Yanchang Zhao |
Publisher | : Academic Press |
Total Pages | : 493 |
Release | : 2013-11-26 |
Genre | : Computers |
ISBN | : 0124115209 |
Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves
Author | : Ken Yale |
Publisher | : Elsevier |
Total Pages | : 824 |
Release | : 2017-11-09 |
Genre | : Mathematics |
ISBN | : 0124166458 |
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Author | : Ian H. Witten |
Publisher | : Elsevier |
Total Pages | : 665 |
Release | : 2011-02-03 |
Genre | : Computers |
ISBN | : 0080890369 |
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Author | : S. Sumathi |
Publisher | : Springer |
Total Pages | : 836 |
Release | : 2006-10-12 |
Genre | : Computers |
ISBN | : 3540343512 |
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.
Author | : Jr., Monte F. Hancock |
Publisher | : CRC Press |
Total Pages | : 304 |
Release | : 2011-12-19 |
Genre | : Computers |
ISBN | : 1439868379 |
Used by corporations, industry, and government to inform and fuel everything from focused advertising to homeland security, data mining can be a very useful tool across a wide range of applications. Unfortunately, most books on the subject are designed for the computer scientist and statistical illuminati and leave the reader largely adrift in tech
Author | : Carlos A. Mota Soares |
Publisher | : IOS Press |
Total Pages | : 156 |
Release | : 2008 |
Genre | : Business & Economics |
ISBN | : 1586038907 |
Contains extended versions of a selection of papers presented at the workshop Data mining for business, held in 2007 together with the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Nanjing China--Preface.
Author | : Carlos A. Mota Soares |
Publisher | : IOS Press |
Total Pages | : 196 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 1607506327 |
Data mining is already incorporated into the business processes in sectors such as health, retail, automotive, finance, telecom and insurance as well as in government. This book contains extended versions of a selection of papers presented at a series of workshops held between 2005 and 2008 on the subject of data mining for business applications.
Author | : Sholom M. Weiss |
Publisher | : Morgan Kaufmann |
Total Pages | : 244 |
Release | : 1998 |
Genre | : Computers |
ISBN | : 9781558604032 |
This book is the first technical guide to provide a complete, generalized road map for developing data-mining applications, together with advice on performing these large-scale, open-ended analyses for real-world data warehouses.
Author | : Julio Ponce |
Publisher | : BoD – Books on Demand |
Total Pages | : 404 |
Release | : 2009-01-01 |
Genre | : Computers |
ISBN | : 390261353X |
This book presents four different ways of theoretical and practical advances and applications of data mining in different promising areas like Industrialist, Biological, and Social. Twenty six chapters cover different special topics with proposed novel ideas. Each chapter gives an overview of the subjects and some of the chapters have cases with offered data mining solutions. We hope that this book will be a useful aid in showing a right way for the students, researchers and practitioners in their studies.