Polynomial Methods In Statistical Inference
Download Polynomial Methods In Statistical Inference full books in PDF, epub, and Kindle. Read online free Polynomial Methods In Statistical Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yihong Wu |
Publisher | : |
Total Pages | : 198 |
Release | : 2020-10-12 |
Genre | : |
ISBN | : 9781680837308 |
The authors of this monograph survey a suite of techniques based on the theory of polynomials, collectively referred to as polynomial methods. These techniques provide useful tools not only for the design of highly practical algorithms with provable optimality, but also for establishing the fundamental limits of inference problems through moment matching. The authors demonstrate the effectiveness of the polynomial method using concrete problems such as entropy and support size estimation, distinct elements problem, and learning Gaussian mixture models. This monograph provides a comprehensive, yet concise, overview of the theory covering topics such as polynomial approximation, polynomial interpolation and majorization, moment space and positive polynomials, orthogonal polynomials and Gaussian quadrature. The authors proceed to show the applications of the theory in statistical inference. Polynomial Methods in Statistical Inference provides students, and researchers with an accessible and complete treatment of a subject that has recently been used to solve many challenging problems in statistical inference.
Author | : Rudolf J. Freund |
Publisher | : Elsevier |
Total Pages | : 694 |
Release | : 2003-01-07 |
Genre | : Mathematics |
ISBN | : 0080498221 |
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Author | : Hashimzade, Nigar |
Publisher | : Edward Elgar Publishing |
Total Pages | : 672 |
Release | : 2021-11-18 |
Genre | : Business & Economics |
ISBN | : 1788976487 |
Written in a comprehensive yet accessible style, this Handbook introduces readers to a range of modern empirical methods with applications in microeconomics, illustrating how to use two of the most popular software packages, Stata and R, in microeconometric applications.
Author | : Larry Wasserman |
Publisher | : Springer Science & Business Media |
Total Pages | : 446 |
Release | : 2013-12-11 |
Genre | : Mathematics |
ISBN | : 0387217363 |
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Author | : David F. Andrews |
Publisher | : Oxford University Press, USA |
Total Pages | : 184 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 9780198507055 |
Over recent years, developments in statistical computing have freed statisticians from the burden of calculation and have made possible new methods of analysis that previously would have been too difficult or time-consuming. Up till now these developments have been primarily in numerical computation and graphical display, but equal steps forward are now being made in the area of symbolic computing: the use of computer languages and procedures to manipulate expressions. This allows researchers to compute an algebraic expression, rather than evaluate the expression numerically over a given range. This book summarizes a decade of research into the use of symbolic computation applied to statistical inference problems. It shows the considerable potential of the subject to automate statistical calculation, leaving researchers free to concentrate on new concepts. Starting with the development of algorithms applied to standard undergraduate problems, the book then goes on to develop increasingly more powerful tools. Later chapters then discuss the application of these algorithms to different areas of statistical methodology.
Author | : John Fox |
Publisher | : SAGE |
Total Pages | : 100 |
Release | : 2000-01-20 |
Genre | : Mathematics |
ISBN | : 9780761915850 |
Nonparametric simple regression forms the basis for nonparametric multiple regression and directly supplies the building blocks for the type of nonparametric multiple regression called additive regression.
Author | : Romain Azais |
Publisher | : John Wiley & Sons |
Total Pages | : 306 |
Release | : 2018-07-30 |
Genre | : Mathematics |
ISBN | : 1119544092 |
Piecewise-deterministic Markov processes form a class of stochastic models with a sizeable scope of applications: biology, insurance, neuroscience, networks, finance... Such processes are defined by a deterministic motion punctuated by random jumps at random times, and offer simple yet challenging models to study. Nevertheless, the issue of statistical estimation of the parameters ruling the jump mechanism is far from trivial. Responding to new developments in the field as well as to current research interests and needs, Statistical inference for piecewise-deterministic Markov processes offers a detailed and comprehensive survey of state-of-the-art results. It covers a wide range of general processes as well as applied models. The present book also dwells on statistics in the context of Markov chains, since piecewise-deterministic Markov processes are characterized by an embedded Markov chain corresponding to the position of the process right after the jumps.
Author | : Adriano Polpo |
Publisher | : Springer |
Total Pages | : 306 |
Release | : 2018-07-12 |
Genre | : Mathematics |
ISBN | : 3319911430 |
These proceedings from the 37th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2017), held in São Carlos, Brazil, aim to expand the available research on Bayesian methods and promote their application in the scientific community. They gather research from scholars in many different fields who use inductive statistics methods and focus on the foundations of the Bayesian paradigm, their comparison to objectivistic or frequentist statistics counterparts, and their appropriate applications. Interest in the foundations of inductive statistics has been growing with the increasing availability of Bayesian methodological alternatives, and scientists now face much more difficult choices in finding the optimal methods to apply to their problems. By carefully examining and discussing the relevant foundations, the scientific community can avoid applying Bayesian methods on a merely ad hoc basis. For over 35 years, the MaxEnt workshops have explored the use of Bayesian and Maximum Entropy methods in scientific and engineering application contexts. The workshops welcome contributions on all aspects of probabilistic inference, including novel techniques and applications, and work that sheds new light on the foundations of inference. Areas of application in these workshops include astronomy and astrophysics, chemistry, communications theory, cosmology, climate studies, earth science, fluid mechanics, genetics, geophysics, machine learning, materials science, medical imaging, nanoscience, source separation, thermodynamics (equilibrium and non-equilibrium), particle physics, plasma physics, quantum mechanics, robotics, and the social sciences. Bayesian computational techniques such as Markov chain Monte Carlo sampling are also regular topics, as are approximate inferential methods. Foundational issues involving probability theory and information theory, as well as novel applications of inference to illuminate the foundations of physical theories, are also of keen interest.
Author | : Christopher G. Small |
Publisher | : John Wiley & Sons |
Total Pages | : 268 |
Release | : 2011-09-15 |
Genre | : Mathematics |
ISBN | : 1118165535 |
Explains how Hilbert space techniques cross the boundaries into the foundations of probability and statistics. Focuses on the theory of martingales stochastic integration, interpolation and density estimation. Includes a copious amount of problems and examples.
Author | : P.K. Bhattacharya |
Publisher | : Academic Press |
Total Pages | : 546 |
Release | : 2016-06-23 |
Genre | : Mathematics |
ISBN | : 0128041234 |
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures