Recent Advances in Optimization and its Applications in Engineering

Recent Advances in Optimization and its Applications in Engineering
Author: Moritz Diehl
Publisher: Springer Science & Business Media
Total Pages: 535
Release: 2010-09-21
Genre: Technology & Engineering
ISBN: 3642125980

Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.

Perturbation Analysis of Optimization Problems

Perturbation Analysis of Optimization Problems
Author: J.Frederic Bonnans
Publisher: Springer Science & Business Media
Total Pages: 626
Release: 2000-05-11
Genre: Mathematics
ISBN: 9780387987057

A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.

Sparse Polynomial Approximation of High-Dimensional Functions

Sparse Polynomial Approximation of High-Dimensional Functions
Author: Ben Adcock
Publisher: SIAM
Total Pages: 310
Release: 2022-02-16
Genre: Mathematics
ISBN: 161197688X

Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Optimization by Vector Space Methods

Optimization by Vector Space Methods
Author: David G. Luenberger
Publisher: John Wiley & Sons
Total Pages: 348
Release: 1997-01-23
Genre: Technology & Engineering
ISBN: 9780471181170

Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Aerospace System Analysis and Optimization in Uncertainty

Aerospace System Analysis and Optimization in Uncertainty
Author: Loïc Brevault
Publisher: Springer Nature
Total Pages: 477
Release: 2020-08-26
Genre: Mathematics
ISBN: 3030391264

Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.

Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization
Author: Miguel F. Anjos
Publisher: Springer Science & Business Media
Total Pages: 955
Release: 2011-11-19
Genre: Business & Economics
ISBN: 1461407699

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

High-Dimensional Optimization and Probability

High-Dimensional Optimization and Probability
Author: Ashkan Nikeghbali
Publisher: Springer Nature
Total Pages: 417
Release: 2022-08-04
Genre: Mathematics
ISBN: 3031008324

This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Sparse Polynomial Optimization: Theory And Practice

Sparse Polynomial Optimization: Theory And Practice
Author: Victor Magron
Publisher: World Scientific
Total Pages: 223
Release: 2023-04-25
Genre: Mathematics
ISBN: 1800612966

Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.

Advances and Trends in Optimization with Engineering Applications

Advances and Trends in Optimization with Engineering Applications
Author: Tamas Terlaky
Publisher: SIAM
Total Pages: 730
Release: 2017-04-26
Genre: Mathematics
ISBN: 1611974682

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.