Poisson Line Cox Process

Poisson Line Cox Process
Author: Harpreet S. Dhillon
Publisher: Springer Nature
Total Pages: 131
Release: 2022-06-01
Genre: Computers
ISBN: 303102379X

This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.

Lectures on the Poisson Process

Lectures on the Poisson Process
Author: Günter Last
Publisher: Cambridge University Press
Total Pages: 315
Release: 2017-10-26
Genre: Mathematics
ISBN: 1107088011

A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.

Poisson Line Cox Process

Poisson Line Cox Process
Author: Harpreet S. Dhillon
Publisher: Morgan & Claypool Publishers
Total Pages: 151
Release: 2020-06-24
Genre: Computers
ISBN: 1681738430

This book provides a comprehensive treatment of the Poisson line Cox process (PLCP) and its applications to vehicular networks. The PLCP is constructed by placing points on each line of a Poisson line process (PLP) as per an independent Poisson point process (PPP). For vehicular applications, one can imagine the layout of the road network as a PLP and the vehicles on the roads as the points of the PLCP. First, a brief historical account of the evolution of the theory of PLP is provided to familiarize readers with the seminal contributions in this area. In order to provide a self-contained treatment of this topic, the construction and key fundamental properties of both PLP and PLCP are discussed in detail. The rest of the book is devoted to the applications of these models to a variety of wireless networks, including vehicular communication networks and localization networks. Specifically, modeling the locations of vehicular nodes and roadside units (RSUs) using PLCP, the signal-to-interference-plus-noise ratio (SINR)-based coverage analysis is presented for both ad hoc and cellular network models. For a similar setting, the load on the cellular macro base stations (MBSs) and RSUs in a vehicular network is also characterized analytically. For the localization networks, PLP is used to model blockages, which is shown to facilitate the characterization of asymptotic blind spot probability in a localization application. Finally, the path distance characteristics for a special case of PLCP are analyzed, which can be leveraged to answer critical questions in the areas of transportation networks and urban planning. The book is concluded with concrete suggestions on future directions of research. Based largely on the original research of the authors, this is the first book that specifically focuses on the self-contained mathematical treatment of the PLCP. The ideal audience of this book is graduate students as well as researchers in academia and industry who are familiar with probability theory, have some exposure to point processes, and are interested in the field of stochastic geometry and vehicular networks. Given the diverse backgrounds of the potential readers, the focus has been on providing an accessible and pedagogical treatment of this topic by consciously avoiding the measure theoretic details without compromising mathematical rigor.

Stochastic Geometry and Its Applications

Stochastic Geometry and Its Applications
Author: Sung Nok Chiu
Publisher: John Wiley & Sons
Total Pages: 561
Release: 2013-06-27
Genre: Mathematics
ISBN: 1118658256

An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.

Point Processes

Point Processes
Author: D.R. Cox
Publisher: Routledge
Total Pages: 188
Release: 2018-12-19
Genre: Mathematics
ISBN: 135142386X

There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA
Author: Elias T. Krainski
Publisher: CRC Press
Total Pages: 284
Release: 2018-12-07
Genre: Mathematics
ISBN: 0429629850

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.

Spatial Point Patterns

Spatial Point Patterns
Author: Adrian Baddeley
Publisher: CRC Press
Total Pages: 830
Release: 2015-11-11
Genre: Mathematics
ISBN: 1482210215

Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th

Stochastic Geometry

Stochastic Geometry
Author: David Coupier
Publisher: Springer
Total Pages: 240
Release: 2019-04-09
Genre: Mathematics
ISBN: 3030135470

This volume offers a unique and accessible overview of the most active fields in Stochastic Geometry, up to the frontiers of recent research. Since 2014, the yearly meeting of the French research structure GDR GeoSto has been preceded by two introductory courses. This book contains five of these introductory lectures. The first chapter is a historically motivated introduction to Stochastic Geometry which relates four classical problems (the Buffon needle problem, the Bertrand paradox, the Sylvester four-point problem and the bicycle wheel problem) to current topics. The remaining chapters give an application motivated introduction to contemporary Stochastic Geometry, each one devoted to a particular branch of the subject: understanding spatial point patterns through intensity and conditional intensities; stochastic methods for image analysis; random fields and scale invariance; and the theory of Gibbs point processes. Exposing readers to a rich theory, this book will encourage further exploration of the subject and its wide applications.

An Introduction to Cellular Network Analysis Using Stochastic Geometry

An Introduction to Cellular Network Analysis Using Stochastic Geometry
Author: Jeffrey G. Andrews
Publisher: Springer Nature
Total Pages: 99
Release: 2023-06-30
Genre: Computers
ISBN: 3031297431

This book provides an accessible yet rigorous first reference for readers interested in learning how to model and analyze cellular network performance using stochastic geometry. In addition to the canonical downlink and uplink settings, analyses of heterogeneous cellular networks and dense cellular networks are also included. For each of these settings, the focus is on the calculation of coverage probability, which gives the complementary cumulative distribution function (ccdf) of signal-to-interference-and-noise ratio (SINR) and is the complement of the outage probability. Using this, other key performance metrics, such as the area spectral efficiency, are also derived. These metrics are especially useful in understanding the effect of densification on network performance. In order to make this a truly self-contained reference, all the required background material from stochastic geometry is introduced in a coherent and digestible manner. This Book: Provides an approachable introduction to the analysis of cellular networks and illuminates key system dependencies Features an approach based on stochastic geometry as applied to cellular networks including both downlink and uplink Focuses on the statistical distribution of signal-to-interference-and-noise ratio (SINR) and related metrics