Asymptotic Analysis of Fields in Multi-structures

Asymptotic Analysis of Fields in Multi-structures
Author: Vladimir Kozlov
Publisher: Oxford University Press, USA
Total Pages: 308
Release: 1999
Genre: Mathematics
ISBN: 9780198514954

This book outlines a powerful new method in analysis which has already been instrumental in solving complicated partial differential equations arising in various areas of engineering. It is suitable for those working with partial differential equations and their applications, and an undergraduate knowledge of PDE's and functional analysis is assumed.

Asymptotic Methods for Elastic Structures

Asymptotic Methods for Elastic Structures
Author: Philippe G. Ciarlet
Publisher: Walter de Gruyter
Total Pages: 309
Release: 2011-07-20
Genre: Mathematics
ISBN: 3110873729

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.

Multi-scale Modelling for Structures and Composites

Multi-scale Modelling for Structures and Composites
Author: G. Panasenko
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2005-02-09
Genre: Mathematics
ISBN: 9781402029813

Numerous applications of rod structures in civil engineering, aircraft and spacecraft confirm the importance of the topic. On the other hand the majority of books on structural mechanics use some simplifying hypotheses; these hypotheses do not allow to consider some important effects, for instance the boundary layer effects near the points of junction of rods. So the question concerning the limits of applicability of structural mechanics hypotheses and the possibilities of their refinement arise. In this connection the asymptotic analysis of equations of mathematical physics, the equations of elasticity in rod structures (without these hypotheses and simplifying assumptions being imposed) is undertaken in the present book. Moreover, a lot of modern structures are made of composite materials and therefore the material of the rods is not homogeneous. This inhomogeneity of the material can generate some unexpected effects. These effects are analysed in this book. The methods of multi-scale modelling are presented by the homogenization, multi-level asymptotic analysis and the domain decomposition. These methods give an access to a new class of hybrid models combining macroscopic description with "microscopic zooms".

Mathematical Elasticity

Mathematical Elasticity
Author:
Publisher: Elsevier
Total Pages: 561
Release: 1997-07-22
Genre: Mathematics
ISBN: 0080535917

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.

Mechanics: From Theory to Computation

Mechanics: From Theory to Computation
Author: Journal of Nonlinear Science
Publisher: Springer Science & Business Media
Total Pages: 533
Release: 2012-12-06
Genre: Science
ISBN: 1461212464

Starting in 1996, a sequence of articles appeared in the Journal of Nonlinear Science dedicated to the memory of one of its original editors, Juan-Carlos Simo, Applied Me chanics, Stanford University. Sadly, Juan-Carlos passed away at an early age in 1994. We lost a brilliant colleague and a wonderful person. These articles are collected in the present volume. Many of them are updated and corrected especially for this occasion. These essays are in areas of scientific interest of Juan-Carlos, including mechanics (particles, rigid bodies, fluids, elasticity, plastic ity, etc.), geometry, applied dynamics, and, of course, computation. His interests were extremely broad-he did not see boundaries between computation, mathematics, me chanics, and dynamics, and, in that sense, he ideally reflected the spirit of the journal and many of the most exciting areas of current scientific interest. Juan-Carlos was one of those select and gifted people who could cross interdisci plinary boundaries with extremely high quality and productive interactions of lasting value. His contributions, ranging from concrete engineering problems to fundamental mathematical theorems in geometric mechanics, are remarkable. In current conferences as well as in scientific books and articles, and over a wide range of subjects, one frequently hears how his ideas as well as specific results are often used and quoted-this is one indication of just how profound and fundamental his work has impacted the community.

IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models

IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models
Author: George Jaiani
Publisher: Springer Science & Business Media
Total Pages: 237
Release: 2008-09-02
Genre: Technology & Engineering
ISBN: 1402087748

This proceedings volume contains papers on the main topics reflecting the scientific programme of the symposium: hierarchical, refined mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. In particular, peculiarities of cusped shells, plates, and beams are emphasized and special attention is paid to junction, multibody and fluid-elastic shell (plate, beam) interaction problems and their applications. The contributions are theoretical, practical, and numerical in character. This volume is dedicated to Ilia Vekua on the centenary of his birth.

Complex Methods for Partial Differential Equations

Complex Methods for Partial Differential Equations
Author: Heinrich Begehr
Publisher: Springer Science & Business Media
Total Pages: 331
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461332915

This volume is a collection of manscripts mainly originating from talks and lectures given at the Workshop on Recent Trends in Complex Methods for Par tial Differential Equations held from July 6 to 10, 1998 at the Middle East Technical University in Ankara, Turkey, sponsored by The Scientific and Tech nical Research Council of Turkey and the Middle East Technical University. This workshop is a continuation oftwo workshops from 1988 and 1993 at the In ternational Centre for Theoretical Physics in Trieste, Italy entitled Functional analytic Methods in Complex Analysis and Applications to Partial Differential Equations. Since classical complex analysis of one and several variables has a long tra dition it is of high level. But most of its basic problems are solved nowadays so that within the last few decades it has lost more and more attention. The area of complex and functional analytic methods in partial differential equations, however, is still a growing and flourishing field, in particular as these methods are not only applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many books which recently were published in this field and also by the proceedings in this ISAAC series and the ISAAC congresses and workshops.

Theory of Shells

Theory of Shells
Author: Philippe G. Ciarlet
Publisher: Elsevier
Total Pages: 662
Release: 2000-05-11
Genre: Mathematics
ISBN: 0080511236

The objective of Volume III is to lay down the proper mathematical foundations of the two-dimensional theory of shells. To this end, it provides, without any recourse to any a priori assumptions of a geometrical or mechanical nature, a mathematical justification of two-dimensional nonlinear and linear shell theories, by means of asymptotic methods, with the thickness as the "small" parameter.

Mathematical Elasticity

Mathematical Elasticity
Author: Philippe G. Ciarlet
Publisher: SIAM
Total Pages: 575
Release: 2022-01-22
Genre: Mathematics
ISBN: 1611976804

In this second book of a three-volume set, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. Theory of Plates also illustrates how asymptotic methods allow for justification of the Kirchhoff–Love theory of nonlinear elastic plates and presents a detailed mathematical analysis of the von Kármán equations. An extended preface and extensive bibliography have been added to highlight the progress that has been made since the volume’s original publication. While each one of the three volumes is self-contained, together the Mathematical Elasticity set provides the only modern treatise on elasticity; introduces contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells; and contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.