Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 292
Release: 2011-01-01
Genre: Mathematics
ISBN: 9781611970739

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing
Author: Tetsuya Sakurai
Publisher: Springer
Total Pages: 312
Release: 2018-01-03
Genre: Computers
ISBN: 3319624261

This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 285
Release: 2011-05-26
Genre: Mathematics
ISBN: 1611970725

This revised edition discusses numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method and automatic multilevel substructuring.

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems
Author: Daniel Kressner
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2006-01-20
Genre: Mathematics
ISBN: 3540285024

This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory

Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory
Author: Peter Benner
Publisher: Springer
Total Pages: 635
Release: 2015-05-09
Genre: Mathematics
ISBN: 3319152602

This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on differential-algebraic equations, to which he together with Peter Kunkel made many groundbreaking contributions, are the topic of the chapters in Part III. Besides providing a scientific discussion of Volker Mehrmann's work and its impact on the development of several areas of applied mathematics, the individual chapters stand on their own as reference works for selected topics in the fields of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory.

Nonconservative Stability Problems of Modern Physics

Nonconservative Stability Problems of Modern Physics
Author: Oleg N. Kirillov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 548
Release: 2021-03-08
Genre: Science
ISBN: 3110655403

This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler’s destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.

Quantum Mechanics: Genesis and Achievements

Quantum Mechanics: Genesis and Achievements
Author: Alexander Komech
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2012-10-24
Genre: Science
ISBN: 9400755414

The focus of the present work is nonrelativistic and relativistic quantum mechanics with standard applications to the hydrogen atom. The author has aimed at presenting quantum mechanics in a comprehensive yet accessible for mathematicians and other non-physicists. The genesis of quantum mechanics, its applications to basic quantum phenomena, and detailed explanations of the corresponding mathematical methods are presented. The exposition is formalized (whenever possible) on the basis of the coupled Schroedinger, Dirac and Maxwell equations. Aimed at upper graduate and graduate students in mathematical and physical science studies.

From Classical to Quantum Mechanics

From Classical to Quantum Mechanics
Author: Giampiero Esposito
Publisher: Cambridge University Press
Total Pages: 612
Release: 2004-03-11
Genre: Science
ISBN: 1139450549

This 2004 textbook provides a pedagogical introduction to the formalism, foundations and applications of quantum mechanics. Part I covers the basic material which is necessary to understand the transition from classical to wave mechanics. Topics include classical dynamics, with emphasis on canonical transformations and the Hamilton-Jacobi equation, the Cauchy problem for the wave equation, Helmholtz equation and eikonal approximation, introduction to spin, perturbation theory and scattering theory. The Weyl quantization is presented in Part II, along with the postulates of quantum mechanics. Part III is devoted to topics such as statistical mechanics and black-body radiation, Lagrangian and phase-space formulations of quantum mechanics, and the Dirac equation. This book is intended for use as a textbook for beginning graduate and advanced undergraduate courses. It is self-contained and includes problems to aid the reader's understanding.