Noncommutative Geometry and Number Theory

Noncommutative Geometry and Number Theory
Author: Caterina Consani
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2007-12-18
Genre: Mathematics
ISBN: 3834803529

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

Perspectives on Noncommutative Geometry

Perspectives on Noncommutative Geometry
Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
Total Pages: 176
Release: 2011
Genre: Mathematics
ISBN: 0821848496

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.

From Differential Geometry to Non-commutative Geometry and Topology

From Differential Geometry to Non-commutative Geometry and Topology
Author: Neculai S. Teleman
Publisher: Springer Nature
Total Pages: 406
Release: 2019-11-10
Genre: Mathematics
ISBN: 3030284336

This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.

Noncommutative Geometry

Noncommutative Geometry
Author: Alain Connes
Publisher: Springer
Total Pages: 364
Release: 2003-12-15
Genre: Mathematics
ISBN: 3540397027

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

An Invitation To Noncommutative Geometry

An Invitation To Noncommutative Geometry
Author: Matilde Marcolli
Publisher: World Scientific
Total Pages: 515
Release: 2008-02-11
Genre: Science
ISBN: 9814475629

This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics
Author: Walter D. van Suijlekom
Publisher: Springer
Total Pages: 246
Release: 2014-07-21
Genre: Science
ISBN: 9401791627

This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
Author: Alain Connes
Publisher: American Mathematical Soc.
Total Pages: 810
Release: 2019-03-13
Genre: Mathematics
ISBN: 1470450453

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Quantum Field Theory and Noncommutative Geometry

Quantum Field Theory and Noncommutative Geometry
Author: Ursula Carow-Watamura
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2005-02-21
Genre: Mathematics
ISBN: 9783540239000

This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.

Arithmetic Noncommutative Geometry

Arithmetic Noncommutative Geometry
Author: Matilde Marcolli
Publisher: American Mathematical Soc.
Total Pages: 152
Release: 2005
Genre: Mathematics
ISBN: 0821838334

Arithmetic Noncommutative Geometry uses ideas and tools from noncommutative geometry to address questions in a new way and to reinterpret results and constructions from number theory and arithmetic algebraic geometry. This general philosophy is applied to the geometry and arithmetic of modular curves and to the fibers at Archimedean places of arithmetic surfaces and varieties. Noncommutative geometry can be expected to say something about topics of arithmetic interest because it provides the right framework for which the tools of geometry continue to make sense on spaces that are very singular and apparently very far from the world of algebraic varieties. This provides a way of refining the boundary structure of certain classes of spaces that arise in the context of arithmetic geometry. With a foreword written by Yuri Manin and a brief introduction to noncommutative geometry, this book offers a comprehensive account of the cross fertilization between two important areas, noncommutative geometry and number theory. It is suitable for graduate students and researchers interested in these areas.