Periodic Differential Operators
Download Periodic Differential Operators full books in PDF, epub, and Kindle. Read online free Periodic Differential Operators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : B. Malcolm Brown |
Publisher | : Springer Science & Business Media |
Total Pages | : 220 |
Release | : 2012-10-30 |
Genre | : Mathematics |
ISBN | : 3034805284 |
Periodic differential operators have a rich mathematical theory as well as important physical applications. They have been the subject of intensive development for over a century and remain a fertile research area. This book lays out the theoretical foundations and then moves on to give a coherent account of more recent results, relating in particular to the eigenvalue and spectral theory of the Hill and Dirac equations. The book will be valuable to advanced students and academics both for general reference and as an introduction to active research topics.
Author | : Jukka Saranen |
Publisher | : Springer Science & Business Media |
Total Pages | : 461 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 3662047969 |
An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
Author | : Drumi Bainov |
Publisher | : Routledge |
Total Pages | : 238 |
Release | : 2017-11-01 |
Genre | : Mathematics |
ISBN | : 1351439103 |
Impulsive differential equations have been the subject of intense investigation in the last 10-20 years, due to the wide possibilities for their application in numerous fields of science and technology. This new work presents a systematic exposition of the results solving all of the more important problems in this field.
Author | : T. A. Burton |
Publisher | : Courier Corporation |
Total Pages | : 370 |
Release | : 2014-06-24 |
Genre | : Mathematics |
ISBN | : 0486150453 |
This book's discussion of a broad class of differential equations includes linear differential and integrodifferential equations, fixed-point theory, and the basic stability and periodicity theory for nonlinear ordinary and functional differential equations.
Author | : Joachim Weidmann |
Publisher | : Springer |
Total Pages | : 310 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 3540479120 |
These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.
Author | : T. Suslina |
Publisher | : American Mathematical Soc. |
Total Pages | : 318 |
Release | : 2008-01-01 |
Genre | : Mathematics |
ISBN | : 9780821890776 |
"This volume is dedicated to the eightieth birthday of Professor M. Sh. Birman. It contains original articles in spectral and scattering theory of differential operators, in particular, Schrodinger operators, and in homogenization theory. All articles are written by members of M. Sh. Birman's research group who are affiliated with different universities all over the world. A specific feature of the majority of the papers is a combination of traditional methods with new modern ideas."--BOOK JACKET.
Author | : Fedor S. Rofe-Beketov |
Publisher | : World Scientific |
Total Pages | : 463 |
Release | : 2005 |
Genre | : Science |
ISBN | : 9812562761 |
- Detailed bibliographical comments and some open questions are given after each chapter - Indicates connections between the content of the book and many other topics in mathematics and physics - Open questions are formulated and commented with the intention to attract attention of young mathematicians
Author | : Leonid Pastur |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2011-12-10 |
Genre | : Science |
ISBN | : 9783642743481 |
In the last fifteen years the spectral properties of the Schrodinger equation and of other differential and finite-difference operators with random and almost-periodic coefficients have attracted considerable and ever increasing interest. This is so not only because of the subject's position at the in tersection of operator spectral theory, probability theory and mathematical physics, but also because of its importance to theoretical physics, and par ticularly to the theory of disordered condensed systems. It was the requirements of this theory that motivated the initial study of differential operators with random coefficients in the fifties and sixties, by the physicists Anderson, 1. Lifshitz and Mott; and today the same theory still exerts a strong influence on the discipline into which this study has evolved, and which will occupy us here. The theory of disordered condensed systems tries to describe, in the so-called one-particle approximation, the properties of condensed media whose atomic structure exhibits no long-range order. Examples of such media are crystals with chaotically distributed impurities, amorphous substances, biopolymers, and so on. It is natural to describe the location of atoms and other characteristics of such media probabilistically, in such a way that the characteristics of a region do not depend on the region's position, and the characteristics of regions far apart are correlated only very weakly. An appropriate model for such a medium is a homogeneous and ergodic, that is, metrically transitive, random field.
Author | : Doina Cioranescu |
Publisher | : Springer |
Total Pages | : 508 |
Release | : 2018-11-03 |
Genre | : Mathematics |
ISBN | : 9811330328 |
This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.
Author | : Toka Diagana |
Publisher | : Springer Science & Business Media |
Total Pages | : 312 |
Release | : 2013-08-13 |
Genre | : Mathematics |
ISBN | : 3319008498 |
This book presents a comprehensive introduction to the concepts of almost periodicity, asymptotic almost periodicity, almost automorphy, asymptotic almost automorphy, pseudo-almost periodicity, and pseudo-almost automorphy as well as their recent generalizations. Some of the results presented are either new or else cannot be easily found in the mathematical literature. Despite the noticeable and rapid progress made on these important topics, the only standard references that currently exist on those new classes of functions and their applications are still scattered research articles. One of the main objectives of this book is to close that gap. The prerequisites for the book is the basic introductory course in real analysis. Depending on the background of the student, the book may be suitable for a beginning graduate and/or advanced undergraduate student. Moreover, it will be of a great interest to researchers in mathematics as well as in engineering, in physics, and related areas. Further, some parts of the book may be used for various graduate and undergraduate courses.