Performance Analysis of Complex Networks and Systems

Performance Analysis of Complex Networks and Systems
Author: Piet Van Mieghem
Publisher: Cambridge University Press
Total Pages: 692
Release: 2014-04-24
Genre: Technology & Engineering
ISBN: 1139952781

This rigorous, self-contained book describes mathematical and, in particular, stochastic and graph theoretic methods to assess the performance of complex networks and systems. It comprises three parts: the first is a review of probability theory; Part II covers the classical theory of stochastic processes (Poisson, Markov and queueing theory), which are considered to be the basic building blocks for performance evaluation studies; Part III focuses on the rapidly expanding new field of network science. This part deals with the recently obtained insight that many very different large complex networks – such as the Internet, World Wide Web, metabolic and human brain networks, utility infrastructures, social networks – evolve and behave according to general common scaling laws. This understanding is useful when assessing the end-to-end quality of Internet services and when designing robust and secure networks. Containing problems and solved solutions, the book is ideal for graduate students taking courses in performance analysis.

Performance Analysis of Communications Networks and Systems

Performance Analysis of Communications Networks and Systems
Author: Piet Van Mieghem
Publisher: Cambridge University Press
Total Pages: 545
Release: 2009-04-09
Genre: Technology & Engineering
ISBN: 1139450824

This rigourous and self-contained book describes mathematical and, in particular, stochastic methods to assess the performance of networked systems. It consists of three parts. The first part is a review on probability theory. Part two covers the classical theory of stochastic processes (Poisson, renewal, Markov and queuing theory), which are considered to be the basic building blocks for performance evaluation studies. Part three focuses on the relatively new field of the physics of networks. This part deals with the recently obtained insights that many very different large complex networks - such as the Internet, World Wide Web, proteins, utility infrastructures, social networks - evolve and behave according to more general common scaling laws. This understanding is useful when assessing the end-to-end quality of communications services, for example, in Internet telephony, real-time video and interacting games. Containing problems and solutions, this book is ideal for graduate students taking courses in performance analysis.

Performance Analysis of Complex Networks and Systems

Performance Analysis of Complex Networks and Systems
Author: Piet Van Mieghem
Publisher: Cambridge University Press
Total Pages: 692
Release: 2014-04-24
Genre: Computers
ISBN: 1107058600

Provides the mathematical, stochastic and graph theoretic methods to analyse the performance and robustness of complex networks and systems.

Graph Spectra for Complex Networks

Graph Spectra for Complex Networks
Author: Piet van Mieghem
Publisher: Cambridge University Press
Total Pages: 363
Release: 2010-12-02
Genre: Technology & Engineering
ISBN: 1139492276

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.

Performance Modeling and Analysis of Communication Networks

Performance Modeling and Analysis of Communication Networks
Author: Phuoc Tran-Gia
Publisher: BoD – Books on Demand
Total Pages: 370
Release: 2021-10-12
Genre: Computers
ISBN: 3958261523

This textbook provides an introduction to common methods of performance modeling and analysis of communication systems. These methods form the basis of traffic engineering, teletraffic theory, and analytical system dimensioning. The fundamentals of probability theory, stochastic processes, Markov processes, and embedded Markov chains are presented. Basic queueing models are described with applications in communication networks. Advanced methods are presented that have been frequently used in recent practice, especially discrete-time analysis algorithms, or which go beyond classical performance measures such as Quality of Experience or energy efficiency. Recent examples of modern communication networks include Software Defined Networking and the Internet of Things. Throughout the book, illustrative examples are used to provide practical experience in performance modeling and analysis. Target group: The book is aimed at students and scientists in computer science and technical computer science, operations research, electrical engineering and economics.

Complex Network Analysis in Python

Complex Network Analysis in Python
Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
Total Pages: 330
Release: 2018-01-19
Genre: Computers
ISBN: 1680505408

Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.

Control Techniques for Complex Networks

Control Techniques for Complex Networks
Author: Sean Meyn
Publisher: Cambridge University Press
Total Pages: 33
Release: 2008
Genre: Mathematics
ISBN: 0521884411

From foundations to state-of-the-art; the tools and philosophy you need to build network models.

Complex Networks & Their Applications IX

Complex Networks & Their Applications IX
Author: Rosa M. Benito
Publisher: Springer Nature
Total Pages: 702
Release: 2020-12-19
Genre: Technology & Engineering
ISBN: 3030653471

This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the IX International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2020). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.

Mining Complex Networks

Mining Complex Networks
Author: Bogumil Kaminski
Publisher: CRC Press
Total Pages: 228
Release: 2021-12-14
Genre: Mathematics
ISBN: 1000515907

This book concentrates on mining networks, a subfield within data science. Data science uses scientific and computational tools to extract valuable knowledge from large data sets. Once data is processed and cleaned, it is analyzed and presented to support decision-making processes. Data science and machine learning tools have become widely used in companies of all sizes. Networks are often large-scale, decentralized, and evolve dynamically over time. Mining complex networks aim to understand the principles governing the organization and the behavior of such networks is crucial for a broad range of fields of study. Here are a few selected typical applications of mining networks: Community detection (which users on some social media platforms are close friends). Link prediction (who is likely to connect to whom on such platforms). Node attribute prediction (what advertisement should be shown to a given user of a particular platform to match their interests). Influential node detection (which social media users would be the best ambassadors of a specific product). This textbook is suitable for an upper-year undergraduate course or a graduate course in programs such as data science, mathematics, computer science, business, engineering, physics, statistics, and social science. This book can be successfully used by all enthusiasts of data science at various levels of sophistication to expand their knowledge or consider changing their career path. Jupiter notebooks (in Python and Julia) accompany the book and can be accessed on https://www.ryerson.ca/mining-complex-networks/. These not only contain all the experiments presented in the book, but also include additional material. Bogumił Kamiński is the Chairman of the Scientific Council for the Discipline of Economics and Finance at SGH Warsaw School of Economics. He is also an Adjunct Professor at the Data Science Laboratory at Ryerson University. Bogumił is an expert in applications of mathematical modeling to solving complex real-life problems. He is also a substantial open-source contributor to the development of the Julia language and its package ecosystem. Paweł Prałat is a Professor of Mathematics in Ryerson University, whose main research interests are in random graph theory, especially in modeling and mining complex networks. He is the Director of Fields-CQAM Lab on Computational Methods in Industrial Mathematics in The Fields Institute for Research in Mathematical Sciences and has pursued collaborations with various industry partners as well as the Government of Canada. He has written over 170 papers and three books with 130 plus collaborators. François Théberge holds a B.Sc. degree in applied mathematics from the University of Ottawa, a M.Sc. in telecommunications from INRS and a PhD in electrical engineering from McGill University. He has been employed by the Government of Canada since 1996 where he was involved in the creation of the data science team as well as the research group now known as the Tutte Institute for Mathematics and Computing. He also holds an adjunct professorial position in the Department of Mathematics and Statistics at the University of Ottawa. His current interests include relational-data mining and deep learning.

Fundamentals of Brain Network Analysis

Fundamentals of Brain Network Analysis
Author: Alex Fornito
Publisher: Academic Press
Total Pages: 496
Release: 2016-03-04
Genre: Medical
ISBN: 0124081185

Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain