Pattern Recognition And Classification In Time Series Data
Download Pattern Recognition And Classification In Time Series Data full books in PDF, epub, and Kindle. Read online free Pattern Recognition And Classification In Time Series Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Volna, Eva |
Publisher | : IGI Global |
Total Pages | : 295 |
Release | : 2016-07-22 |
Genre | : Computers |
ISBN | : 1522505660 |
Patterns can be any number of items that occur repeatedly, whether in the behaviour of animals, humans, traffic, or even in the appearance of a design. As technologies continue to advance, recognizing, mimicking, and responding to all types of patterns becomes more precise. Pattern Recognition and Classification in Time Series Data focuses on intelligent methods and techniques for recognizing and storing dynamic patterns. Emphasizing topics related to artificial intelligence, pattern management, and algorithm development, in addition to practical examples and applications, this publication is an essential reference source for graduate students, researchers, and professionals in a variety of computer-related disciplines.
Author | : Elizabeth Ann Maharaj |
Publisher | : CRC Press |
Total Pages | : 213 |
Release | : 2019-03-19 |
Genre | : Mathematics |
ISBN | : 0429603304 |
The beginning of the age of artificial intelligence and machine learning has created new challenges and opportunities for data analysts, statisticians, mathematicians, econometricians, computer scientists and many others. At the root of these techniques are algorithms and methods for clustering and classifying different types of large datasets, including time series data. Time Series Clustering and Classification includes relevant developments on observation-based, feature-based and model-based traditional and fuzzy clustering methods, feature-based and model-based classification methods, and machine learning methods. It presents a broad and self-contained overview of techniques for both researchers and students. Features Provides an overview of the methods and applications of pattern recognition of time series Covers a wide range of techniques, including unsupervised and supervised approaches Includes a range of real examples from medicine, finance, environmental science, and more R and MATLAB code, and relevant data sets are available on a supplementary website
Author | : Christopher M. Bishop |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-08-23 |
Genre | : Computers |
ISBN | : 9781493938438 |
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author | : Richard O. Duda |
Publisher | : John Wiley & Sons |
Total Pages | : 680 |
Release | : 2012-11-09 |
Genre | : Technology & Engineering |
ISBN | : 111858600X |
The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
Author | : Axel Pinz |
Publisher | : Springer |
Total Pages | : 510 |
Release | : 2012-08-14 |
Genre | : Computers |
ISBN | : 3642327176 |
This book constitutes the refereed proceedings of the 34th Symposium of the German Association for Pattern Recognition, DAGM 2012, and the 36th Symposium of the Austrian Association for Pattern Recognition, OAGM 2012, held in Graz, Austria, in August 2012. The 27 revised full papers and 23 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on segmentation, low-level vision, 3D reconstruction, recognition, applications, learning, and features.
Author | : Wladyslaw Homenda |
Publisher | : John Wiley & Sons |
Total Pages | : 256 |
Release | : 2018-03-07 |
Genre | : Technology & Engineering |
ISBN | : 111930282X |
A new approach to the issue of data quality in pattern recognition Detailing foundational concepts before introducing more complex methodologies and algorithms, this book is a self-contained manual for advanced data analysis and data mining. Top-down organization presents detailed applications only after methodological issues have been mastered, and step-by-step instructions help ensure successful implementation of new processes. By positioning data quality as a factor to be dealt with rather than overcome, the framework provided serves as a valuable, versatile tool in the analysis arsenal. For decades, practical need has inspired intense theoretical and applied research into pattern recognition for numerous and diverse applications. Throughout, the limiting factor and perpetual problem has been data—its sheer diversity, abundance, and variable quality presents the central challenge to pattern recognition innovation. Pattern Recognition: A Quality of Data Perspective repositions that challenge from a hurdle to a given, and presents a new framework for comprehensive data analysis that is designed specifically to accommodate problem data. Designed as both a practical manual and a discussion about the most useful elements of pattern recognition innovation, this book: Details fundamental pattern recognition concepts, including feature space construction, classifiers, rejection, and evaluation Provides a systematic examination of the concepts, design methodology, and algorithms involved in pattern recognition Includes numerous experiments, detailed schemes, and more advanced problems that reinforce complex concepts Acts as a self-contained primer toward advanced solutions, with detailed background and step-by-step processes Introduces the concept of granules and provides a framework for granular computing Pattern recognition plays a pivotal role in data analysis and data mining, fields which are themselves being applied in an expanding sphere of utility. By facing the data quality issue head-on, this book provides students, practitioners, and researchers with a clear way forward amidst the ever-expanding data supply.
Author | : Abraham Kandel |
Publisher | : World Scientific |
Total Pages | : 205 |
Release | : 2004 |
Genre | : Computers |
ISBN | : 981256540X |
Adding the time dimension to real-world databases produces Time SeriesDatabases (TSDB) and introduces new aspects and difficulties to datamining and knowledge discovery. This book covers the state-of-the-artmethodology for mining time series databases. The novel data miningmethods presented in the book include techniques for efficientsegmentation, indexing, and classification of noisy and dynamic timeseries. A graph-based method for anomaly detection in time series isdescribed and the book also studies the implications of a novel andpotentially useful representation of time series as strings. Theproblem of detecting changes in data mining models that are inducedfrom temporal databases is additionally discussed.
Author | : Charu C. Aggarwal |
Publisher | : CRC Press |
Total Pages | : 710 |
Release | : 2014-07-25 |
Genre | : Business & Economics |
ISBN | : 1498760589 |
Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi
Author | : Lior Rokach |
Publisher | : World Scientific |
Total Pages | : 242 |
Release | : 2010 |
Genre | : Computers |
ISBN | : 9814271071 |
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Author | : Sankar Kumar Pal |
Publisher | : World Scientific |
Total Pages | : 875 |
Release | : 2016-12-15 |
Genre | : Computers |
ISBN | : 9813144564 |
Containing twenty six contributions by experts from all over the world, this book presents both research and review material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, linguistic, fuzzy-set-theoretic, neural, evolutionary computing and rough-set-theoretic to hybrid soft computing, with significant real-life applications.Pattern Recognition and Big Data provides state-of-the-art classical and modern approaches to pattern recognition and mining, with extensive real life applications. The book describes efficient soft and robust machine learning algorithms and granular computing techniques for data mining and knowledge discovery; and the issues associated with handling Big Data. Application domains considered include bioinformatics, cognitive machines (or machine mind developments), biometrics, computer vision, the e-nose, remote sensing and social network analysis.