Passage Times for Markov Chains

Passage Times for Markov Chains
Author: R. Syski
Publisher: IOS Press
Total Pages: 564
Release: 1992
Genre: Computers
ISBN: 9789051990607

This book is a survey of work on passage times in stable Markov chains with a discrete state space and a continuous time. Passage times have been investigated since early days of probability theory and its applications. The best known example is the first entrance time to a set, which embraces waiting times, busy periods, absorption problems, extinction phenomena, etc. Another example of great interest is the last exit time from a set. The book presents a unifying treatment of passage times, written in a systematic manner and based on modern developments. The appropriate unifying framework is provided by probabilistic potential theory, and the results presented in the text are interpreted from this point of view. In particular, the crucial role of the Dirichlet problem and the Poisson equation is stressed. The work is addressed to applied probalilists, and to those who are interested in applications of probabilistic methods in their own areas of interest. The level of presentation is that of a graduate text in applied stochastic processes. Hence, clarity of presentation takes precedence over secondary mathematical details whenever no serious harm may be expected. Advanced concepts described in the text gain nowadays growing acceptance in applied fields, and it is hoped that this work will serve as an useful introduction. Abstracted by Mathematical Reviews, issue 94c

Markov Chains

Markov Chains
Author: Pierre Bremaud
Publisher: Springer Science & Business Media
Total Pages: 456
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475731248

Primarily an introduction to the theory of stochastic processes at the undergraduate or beginning graduate level, the primary objective of this book is to initiate students in the art of stochastic modelling. However it is motivated by significant applications and progressively brings the student to the borders of contemporary research. Examples are from a wide range of domains, including operations research and electrical engineering. Researchers and students in these areas as well as in physics, biology and the social sciences will find this book of interest.

Matrix-analytic Methods

Matrix-analytic Methods
Author: Guy Latouche
Publisher: World Scientific
Total Pages: 440
Release: 2002
Genre: Fiction
ISBN: 9789812777164

Matrix-analytic methods are fundamental to the analysis of a family of Markov processes rich in structure and of wide applicability. They are extensively used in the modelling and performance analysis of computer systems, telecommunication networks, network protocols and many other stochastic systems of current commercial and engineering interest.This volume deals with: (1) various aspects of the theory of block-structured Markov chains; (2) analysis of complex queueing models; and (3) parameter estimation and specific applications to such areas as cellular mobile systems, FS-ALOHA, the Internet and production systems.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology
Author: Hal Caswell
Publisher: Springer
Total Pages: 308
Release: 2019-04-02
Genre: Social Science
ISBN: 3030105342

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Discrete Stochastic Processes

Discrete Stochastic Processes
Author: Robert G. Gallager
Publisher: Springer Science & Business Media
Total Pages: 280
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 146152329X

Stochastic processes are found in probabilistic systems that evolve with time. Discrete stochastic processes change by only integer time steps (for some time scale), or are characterized by discrete occurrences at arbitrary times. Discrete Stochastic Processes helps the reader develop the understanding and intuition necessary to apply stochastic process theory in engineering, science and operations research. The book approaches the subject via many simple examples which build insight into the structure of stochastic processes and the general effect of these phenomena in real systems. The book presents mathematical ideas without recourse to measure theory, using only minimal mathematical analysis. In the proofs and explanations, clarity is favored over formal rigor, and simplicity over generality. Numerous examples are given to show how results fail to hold when all the conditions are not satisfied. Audience: An excellent textbook for a graduate level course in engineering and operations research. Also an invaluable reference for all those requiring a deeper understanding of the subject.

Markov Chains

Markov Chains
Author: J. R. Norris
Publisher: Cambridge University Press
Total Pages: 260
Release: 1998-07-28
Genre: Mathematics
ISBN: 9780521633963

Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.

Numerical Solution of Markov Chains

Numerical Solution of Markov Chains
Author: William J. Stewart
Publisher: CRC Press
Total Pages: 0
Release: 2021-07-01
Genre: Mathematics
ISBN: 1000447367

Papers presented at a workshop held January 1990 (location unspecified) cover just about all aspects of solving Markov models numerically. There are papers on matrix generation techniques and generalized stochastic Petri nets; the computation of stationary distributions, including aggregation/disaggregation.

Markov Chains

Markov Chains
Author: Bruno Sericola
Publisher: John Wiley & Sons
Total Pages: 306
Release: 2013-08-05
Genre: Mathematics
ISBN: 1118731530

Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes – Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.

Markov Chains and Dependability Theory

Markov Chains and Dependability Theory
Author: Gerardo Rubino
Publisher: Cambridge University Press
Total Pages: 287
Release: 2014-06-12
Genre: Business & Economics
ISBN: 1107007577

Covers fundamental and applied results of Markov chain analysis for the evaluation of dependability metrics, for graduate students and researchers.