Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations VIII

Partial Differential Equations VIII
Author: M.A. Shubin
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642489443

This volume of the EMS contains three articles, on linear overdetermined systems of partial differential equations, dissipative Schroedinger operators, and index theorems. Each article presents a comprehensive survey of its subject, discussing fundamental results such as the construction of compatibility operators and complexes for elliptic, parabolic and hyperbolic coercive problems, the method of functional models and the Atiyah-Singer index theorem and its generalisations. Both classical and recent results are explained in detail and illustrated by means of examples.

From Particle Systems to Partial Differential Equations

From Particle Systems to Partial Differential Equations
Author: Cédric Bernardin
Publisher: Springer
Total Pages: 400
Release: 2022-06-01
Genre: Mathematics
ISBN: 9783030697860

This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general, whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to those physicists who work in statistical mechanics and kinetic theory.

Partial Differential Equations

Partial Differential Equations
Author: Joseph Wloka
Publisher: Cambridge University Press
Total Pages: 536
Release: 1987-05-21
Genre: Mathematics
ISBN: 9780521277594

A rigorous introduction to the abstract theory of partial differential equations progresses from the theory of distribution and Sobolev spaces to Fredholm operations, the Schauder fixed point theorem and Bochner integrals.

A Course on Partial Differential Equations

A Course on Partial Differential Equations
Author: Walter Craig
Publisher: American Mathematical Soc.
Total Pages: 217
Release: 2018-12-12
Genre: Mathematics
ISBN: 1470442922

Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrödinger equation, nonlinear hyperbolic conservation laws, and shock waves. The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.

Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications
Author: E. C. Zachmanoglou
Publisher: Courier Corporation
Total Pages: 434
Release: 2012-04-20
Genre: Mathematics
ISBN: 048613217X

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Lectures on Partial Differential Equations

Lectures on Partial Differential Equations
Author: I. G. Petrovsky
Publisher: Courier Corporation
Total Pages: 261
Release: 2012-12-13
Genre: Mathematics
ISBN: 0486155080

Graduate-level exposition by noted Russian mathematician offers rigorous, readable coverage of classification of equations, hyperbolic equations, elliptic equations, and parabolic equations. Translated from the Russian by A. Shenitzer.

Meshfree Methods for Partial Differential Equations VIII

Meshfree Methods for Partial Differential Equations VIII
Author: Michael Griebel
Publisher: Springer
Total Pages: 245
Release: 2017-04-05
Genre: Computers
ISBN: 3319519549

There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution’s particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author: Haim Brezis
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2010-11-02
Genre: Mathematics
ISBN: 0387709142

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.