Partial Differential Equations in General Relativity

Partial Differential Equations in General Relativity
Author: Alan D. Rendall
Publisher:
Total Pages: 304
Release: 2008-04-03
Genre: Mathematics
ISBN:

A text that will bring together PDE theory, general relativity and astrophysics to deliver an overview of theory of partial differential equations for general relativity. The text will include numerous examples and provide a unique resource for graduate students in mathematics and physics, numerical relativity and cosmology.

Partial Differential Equations in General Relativity

Partial Differential Equations in General Relativity
Author: Alan D. Rendall
Publisher:
Total Pages: 0
Release: 2023
Genre: Differential equations, Partial
ISBN: 9781383035391

A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity.

Partial Differential Equations

Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
Total Pages: 467
Release: 2007-12-21
Genre: Mathematics
ISBN: 0470054565

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Author: S. L. Sobolev
Publisher: Courier Corporation
Total Pages: 452
Release: 1964-01-01
Genre: Science
ISBN: 9780486659640

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

The Action Principle and Partial Differential Equations

The Action Principle and Partial Differential Equations
Author: Demetrios Christodoulou
Publisher: Princeton University Press
Total Pages: 332
Release: 2000-01-17
Genre: Mathematics
ISBN: 9780691049571

This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.

Mathematical Problems of General Relativity I

Mathematical Problems of General Relativity I
Author: Demetrios Christodoulou
Publisher: European Mathematical Society
Total Pages: 164
Release: 2008
Genre: Science
ISBN: 9783037190050

General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.

The Cauchy Problem in General Relativity

The Cauchy Problem in General Relativity
Author: Hans Ringström
Publisher: European Mathematical Society
Total Pages: 310
Release: 2009
Genre: Mathematics
ISBN: 9783037190531

The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.

Exact Solutions of Einstein's Field Equations

Exact Solutions of Einstein's Field Equations
Author: Hans Stephani
Publisher: Cambridge University Press
Total Pages: 732
Release: 2009-09-24
Genre: Science
ISBN: 9780521467025

A completely revised and updated edition of this classic text, covering important new methods and many recently discovered solutions. This edition contains new chapters on generation methods and their application, classification of metrics by invariants, and treatments of homothetic motions and methods from dynamical systems theory. It also includes colliding waves, inhomogeneous cosmological solutions, and spacetimes containing special subspaces.

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations
Author: Peter D. Lax
Publisher: American Mathematical Soc.
Total Pages: 234
Release: 2006
Genre: Mathematics
ISBN: 0821835769

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses. -- Back cover.

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations
Author: Serge Alinhac
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2009-06-17
Genre: Mathematics
ISBN: 0387878238

This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is divided into two parts. The first, which is intuitive and easy to visualize, includes all aspects of the theory involving vector fields and integral curves; the second describes the wave equation and its perturbations for two- or three-space dimensions. Over 100 exercises are included, as well as "do it yourself" instructions for the proofs of many theorems. Only an understanding of differential calculus is required. Notes at the end of the self-contained chapters, as well as references at the end of the book, enable ease-of-use for both the student and the independent researcher.