Parabolic Boundary Value Problems
Download Parabolic Boundary Value Problems full books in PDF, epub, and Kindle. Read online free Parabolic Boundary Value Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Samuil D. Eidelman |
Publisher | : Birkhäuser |
Total Pages | : 307 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034887671 |
The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters.
Author | : C.V. Pao |
Publisher | : Springer Science & Business Media |
Total Pages | : 786 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461530342 |
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
Author | : A. Ashyralyev |
Publisher | : Birkhäuser |
Total Pages | : 367 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3034885180 |
A well-known and widely applied method of approximating the solutions of problems in mathematical physics is the method of difference schemes. Modern computers allow the implementation of highly accurate ones; hence, their construction and investigation for various boundary value problems in mathematical physics is generating much current interest. The present monograph is devoted to the construction of highly accurate difference schemes for parabolic boundary value problems, based on Padé approximations. The investigation is based on a new notion of positivity of difference operators in Banach spaces, which allows one to deal with difference schemes of arbitrary order of accuracy. Establishing coercivity inequalities allows one to obtain sharp, that is, two-sided estimates of convergence rates. The proofs are based on results in interpolation theory of linear operators. This monograph will be of value to professional mathematicians as well as advanced students interested in the fields of functional analysis and partial differential equations.
Author | : Mingxin Wang |
Publisher | : CRC Press |
Total Pages | : 298 |
Release | : 2021-05-12 |
Genre | : Mathematics |
ISBN | : 1000353915 |
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
Author | : Olʹga A. Ladyženskaja |
Publisher | : American Mathematical Soc. |
Total Pages | : 74 |
Release | : 1988 |
Genre | : Mathematics |
ISBN | : 9780821815731 |
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
Author | : Antonino Maugeri |
Publisher | : Wiley-VCH |
Total Pages | : 266 |
Release | : 2000-12-13 |
Genre | : Mathematics |
ISBN | : |
This book unifies the different approaches in studying elliptic and parabolic partial differential equations with discontinuous coefficients. To the enlarging market of researchers in applied sciences, mathematics and physics, it gives concrete answers to questions suggested by non-linear models. Providing an up-to date survey on the results concerning elliptic and parabolic operators on a high level, the authors serve the reader in doing further research. Being themselves active researchers in the field, the authors describe both on the level of good examples and precise analysis, the crucial role played by such requirements on the coefficients as the Cordes condition, Campanato's nearness condition, and vanishing mean oscillation condition. They present the newest results on the basic boundary value problems for operators with VMO coefficients and non-linear operators with discontinuous coefficients and state a lot of open problems in the field.
Author | : Avner Friedman |
Publisher | : Courier Corporation |
Total Pages | : 369 |
Release | : 2013-08-16 |
Genre | : Mathematics |
ISBN | : 0486318265 |
With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.
Author | : Gary M. Lieberman |
Publisher | : World Scientific |
Total Pages | : 472 |
Release | : 1996 |
Genre | : Mathematics |
ISBN | : 9789810228835 |
Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.
Author | : Jan Prüss |
Publisher | : Birkhäuser |
Total Pages | : 618 |
Release | : 2016-07-25 |
Genre | : Mathematics |
ISBN | : 3319276980 |
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
Author | : Heinz-Otto Kreiss |
Publisher | : SIAM |
Total Pages | : 408 |
Release | : 1989-01-01 |
Genre | : Science |
ISBN | : 0898719135 |
Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.