Parabolic Anderson Problem and Intermittency

Parabolic Anderson Problem and Intermittency
Author: René Carmona
Publisher: American Mathematical Soc.
Total Pages: 138
Release: 1994
Genre: Mathematics
ISBN: 0821825771

This book is devoted to the analysis of the large time asymptotics of the solutions of the heat equation in a random time-dependent potential. The authors give complete results in the discrete case of the d-dimensional lattice when the potential is, at each site, a Brownian motion in time. The phenomenon of intermittency of the solutions is discussed.

Solution of the Truncated Complex Moment Problem for Flat Data

Solution of the Truncated Complex Moment Problem for Flat Data
Author: Raúl E. Curto
Publisher: American Mathematical Soc.
Total Pages: 69
Release: 1996
Genre: Mathematics
ISBN: 0821804855

We introduce a matricial approach to the truncated complex moment problem, and apply it to the case of moment matrices of flat data type, for which the columns corresponding to the homogeneous monomials in [italic]z and [italic]z̄ of highest degree can be written in terms of monomials of lower degree. We discuss the connection between complex moment problems and the subnormal completion problem for 2-variable weighted shifts, and present in detail the construction of solutions for truncated complex moment problems associated with monomials of degrees one and two.

Inverse Nodal Problems: Finding the Potential from Nodal Lines

Inverse Nodal Problems: Finding the Potential from Nodal Lines
Author: Ole H. Hald
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 1996
Genre: Mathematics
ISBN: 0821804863

In this paper we consider an eigenvalue problem which arises in the study of rectangular membranes. The mathematical model is an elliptic equation, in potential form, with Dirichlet boundary conditions. We show that the potential is uniquely determined, up to an additive constant, by a subset of the nodal lines of the eigenfunctions. A formula is shown which, when the additive constant is given, yields an approximation to the potential at a dense set of points. We present an estimate for the error made by the formula. A substantial part of this work is the derivation of the asymptotic forms for a rich set of eigenvalues and eigenfunctions for a large set of rectangles.

Surveys in Stochastic Processes

Surveys in Stochastic Processes
Author: Jochen Blath
Publisher: European Mathematical Society
Total Pages: 270
Release: 2011
Genre: Mathematics
ISBN: 9783037190722

The 33rd Bernoulli Society Conference on Stochastic Processes and Their Applications was held in Berlin from July 27 to July 31, 2009. It brought together more than 600 researchers from 49 countries to discuss recent progress in the mathematical research related to stochastic processes, with applications ranging from biology to statistical mechanics, finance and climatology. This book collects survey articles highlighting new trends and focal points in the area written by plenary speakers of the conference, all of them outstanding international experts. A particular aim of this collection is to inspire young scientists to pursue research goals in the wide range of fields represented in this volume.

Analysis of Stochastic Partial Differential Equations

Analysis of Stochastic Partial Differential Equations
Author: Davar Khoshnevisan
Publisher: American Mathematical Soc.
Total Pages: 127
Release: 2014-06-11
Genre: Mathematics
ISBN: 147041547X

The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.

The Parabolic Anderson Model

The Parabolic Anderson Model
Author: Wolfgang König
Publisher: Birkhäuser
Total Pages: 199
Release: 2016-06-30
Genre: Mathematics
ISBN: 3319335960

This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.

Probability and Mathematical Physics

Probability and Mathematical Physics
Author: Donald Andrew Dawson
Publisher: American Mathematical Soc.
Total Pages: 490
Release: 2007
Genre: Mathematics
ISBN: 0821840894

A collection of survey and research papers that gives a glance of the profound consequences of Molchanov's contributions in stochastic differential equations, spectral theory for deterministic and random operators, localization and intermittency, mathematical physics and optics, and other topics.

In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius

In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius
Author: Maria Eulália Vares
Publisher: Springer Nature
Total Pages: 819
Release: 2021-03-25
Genre: Mathematics
ISBN: 3030607542

This is a volume in memory of Vladas Sidoravicius who passed away in 2019. Vladas has edited two volumes appeared in this series ("In and Out of Equilibrium") and is now honored by friends and colleagues with research papers reflecting Vladas' interests and contributions to probability theory.