Outlier Detection In Stream Data By Machine Learning And Feature Selection Methods
Download Outlier Detection In Stream Data By Machine Learning And Feature Selection Methods full books in PDF, epub, and Kindle. Read online free Outlier Detection In Stream Data By Machine Learning And Feature Selection Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Charu C. Aggarwal |
Publisher | : Springer |
Total Pages | : 288 |
Release | : 2017-04-06 |
Genre | : Computers |
ISBN | : 3319547658 |
This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. In addition, it covers the techniques with which such methods can be made more effective. A formal classification of these methods is provided, and the circumstances in which they work well are examined. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification. The similarities and (subtle) differences in the ensemble techniques for the classification and outlier detection problems are explored. These subtle differences do impact the design of ensemble algorithms for the latter problem. This book can be used for courses in data mining and related curricula. Many illustrative examples and exercises are provided in order to facilitate classroom teaching. A familiarity is assumed to the outlier detection problem and also to generic problem of ensemble analysis in classification. This is because many of the ensemble methods discussed in this book are adaptations from their counterparts in the classification domain. Some techniques explained in this book, such as wagging, randomized feature weighting, and geometric subsampling, provide new insights that are not available elsewhere. Also included is an analysis of the performance of various types of base detectors and their relative effectiveness. The book is valuable for researchers and practitioners for leveraging ensemble methods into optimal algorithmic design.
Author | : Dong Wang |
Publisher | : Morgan Kaufmann |
Total Pages | : 232 |
Release | : 2015-04-17 |
Genre | : Computers |
ISBN | : 0128011319 |
Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book
Author | : Goel, Neha |
Publisher | : IGI Global |
Total Pages | : 570 |
Release | : 2023-07-03 |
Genre | : Computers |
ISBN | : 166848787X |
Machine learning (ML) and the internet of things (IoT) are the top technologies used by businesses to increase efficiency, productivity, and competitiveness in this fast-paced digital era transformation. ML is the key tool for fast processing and decision making applied to smart city applications and next-generation IoT devices, which require ML to satisfy their working objective. IoT technology has proven efficient in solving many real-world problems, and ML algorithms combined with IoT means the fusion of product and intelligence to achieve better automation, efficiency, productivity, and connectivity. The Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across Industries highlights the importance of ML for IoT’s success and diverse ML-powered IoT applications. This book addresses the problems and challenges in energy, industry, and healthcare and solutions proposed for ML-enabled IoT and new algorithms in ML. It further addresses their accuracy for existing real-time applications. Covering topics such as agriculture, pattern recognition, and smart applications, this premier reference source is an essential resource for engineers, scientists, educators, students, researchers, and academicians.
Author | : Charu C. Aggarwal |
Publisher | : Springer |
Total Pages | : 481 |
Release | : 2016-12-10 |
Genre | : Computers |
ISBN | : 3319475789 |
This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Author | : Dr. Uday Kamath |
Publisher | : Packt Publishing Ltd |
Total Pages | : 556 |
Release | : 2017-07-11 |
Genre | : Computers |
ISBN | : 1785888552 |
Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects More than 15 open source Java tools in a wide range of techniques, with code and practical usage. More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis. Who This Book Is For This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning. What You Will Learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. In Detail Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain. Style and approach A practical guide to help you explore machine learning—and an array of Java-based tools and frameworks—with the help of practical examples and real-world use cases.
Author | : Manish Gupta |
Publisher | : Springer |
Total Pages | : 110 |
Release | : 2014-04-14 |
Genre | : Computers |
ISBN | : 9783031007774 |
Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers. Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies
Author | : Mari Carmen Aguayo-Torres |
Publisher | : Springer |
Total Pages | : 433 |
Release | : 2015-08-22 |
Genre | : Computers |
ISBN | : 3319225723 |
This book constitutes the thoroughly refereed post-conference proceedings of the 13th International Conference on Wired/Wireless Internet Communications, WWIC 2015, held in Malaga, Spain, in May 2015. The 31 papers presented in this volume were carefully reviewed and selected from 43 submissions. They focus on the efficient integration of new network approaches with the traditional wired infrastructure. The topics addressed are: design and evaluation of protocols, dynamics of the integration, performance tradeoffs, and the need for new performance metrics and cross-layer interactions.
Author | : Albert Bifet |
Publisher | : MIT Press |
Total Pages | : 262 |
Release | : 2018-03-16 |
Genre | : Computers |
ISBN | : 0262346052 |
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Author | : Charu C. Aggarwal |
Publisher | : Springer |
Total Pages | : 746 |
Release | : 2015-04-13 |
Genre | : Computers |
ISBN | : 3319141422 |
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago
Author | : Holland, Barbara |
Publisher | : IGI Global |
Total Pages | : 446 |
Release | : 2024-01-18 |
Genre | : Language Arts & Disciplines |
ISBN | : |
In an era of rapid technological advancements, libraries have evolved to cater to the changing needs and aspirations of users and society at large. IT has emerged as a critical factor in this transformation, empowering libraries to offer faster, more efficient, and highly convenient services to their users. The Handbook of Research on Innovative Approaches to Information Technology in Library and Information Science is a comprehensive guide that delves into the dynamic relationship between libraries, information centers, and information technology (IT). Within the pages of this edited research handbook, a team of esteemed scholars and experts in the field explore the multifaceted applications of IT in libraries and information centers. They delve into the effective management of collections, resources, and operations, shedding light on how technology can optimize these vital aspects of library services. From information centers that curate and provide access, to diverse information resources, to the revolutionary impact of IT in digitizing libraries, this handbook covers a wide range of topics relevant to contemporary library and information science. This book address crucial themes such as artificial intelligence, data science, computer science, information management, metadata, cybersecurity, machine learning, chatbots, mobile services, and robotics. It explores the integration of these cutting-edge technologies within the realm of libraries, examining how they enhance efficiency, user experience, and digital equity. By addressing the challenges and opportunities presented by IT, this handbook equips librarians, information professionals, researchers, professors, advanced students, and practitioners with the knowledge and insights needed to navigate the rapidly evolving landscape of library and information science.