Oscillation Theory of Two-Term Differential Equations

Oscillation Theory of Two-Term Differential Equations
Author: Uri Elias
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2013-03-14
Genre: Mathematics
ISBN: 9401725179

Oscillation theory was born with Sturm's work in 1836. It has been flourishing for the past fifty years. Nowadays it is a full, self-contained discipline, turning more towards nonlinear and functional differential equations. Oscillation theory flows along two main streams. The first aims to study prop erties which are common to all linear differential equations. The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc. Our work belongs to the second type and considers two term linear equations modeled after y(n) + p(x)y = O. More generally, we investigate LnY + p(x)y = 0, where Ln is a disconjugate operator and p(x) has a fixed sign. These equations enjoy a very rich structure and are the natural generalization of the Sturm-Liouville operator. Results about such equations are distributed over hundreds of research papers, many of them are reinvented again and again and the same phenomenon is frequently discussed from various points of view and different definitions of the authors. Our aim is to introduce an order into this plenty and arrange it in a unified and self contained way. The results are readapted and presented in a unified approach. In many cases completely new proofs are given and in no case is the original proof copied verbatim. Many new results are included.

Half-Linear Differential Equations

Half-Linear Differential Equations
Author: Ondrej Dosly
Publisher: Elsevier
Total Pages: 533
Release: 2005-07-06
Genre: Mathematics
ISBN: 0080461239

The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and various more general nonlinear differential equations.- The first complete treatment of the qualitative theory of half-linear differential equations.- Comparison of linear and half-linear theory.- Systematic approach to half-linear oscillation and asymptotic theory.- Comprehensive bibliography and index.- Useful as a reference book in the topic.

Difference Equations and Inequalities

Difference Equations and Inequalities
Author: Ravi P. Agarwal
Publisher: CRC Press
Total Pages: 1010
Release: 2000-01-27
Genre: Mathematics
ISBN: 9781420027020

A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Author: Gerald Teschl
Publisher: American Mathematical Society
Total Pages: 370
Release: 2024-01-12
Genre: Mathematics
ISBN: 147047641X

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Fixed Point Theory and Applications

Fixed Point Theory and Applications
Author: Ravi P. Agarwal
Publisher: Cambridge University Press
Total Pages: 182
Release: 2001-03-22
Genre: Mathematics
ISBN: 1139433792

This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.

Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations

Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations
Author: R.P. Agarwal
Publisher: Springer Science & Business Media
Total Pages: 685
Release: 2013-03-09
Genre: Mathematics
ISBN: 9401725152

In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.

Scaling of Differential Equations

Scaling of Differential Equations
Author: Hans Petter Langtangen
Publisher: Springer
Total Pages: 149
Release: 2016-06-15
Genre: Mathematics
ISBN: 3319327267

The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.

A Textbook on Ordinary Differential Equations

A Textbook on Ordinary Differential Equations
Author: Shair Ahmad
Publisher: Springer
Total Pages: 337
Release: 2015-06-05
Genre: Mathematics
ISBN: 3319164082

This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, which may be suitable for more advanced undergraduate or first-year graduate students. The second edition has been revised to correct minor errata, and features a number of carefully selected new exercises, together with more detailed explanations of some of the topics. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

Harmonic Analysis in Hypercomplex Systems

Harmonic Analysis in Hypercomplex Systems
Author: Yu.M. Berezansky
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2013-06-29
Genre: Mathematics
ISBN: 9401717583

First works related to the topics covered in this book belong to J. Delsarte and B. M. Le vitan and appeared since 1938. In these works, the families of operators that generalize usual translation operators were investigated and the corresponding harmonic analysis was constructed. Later, starting from 1950, it was noticed that, in such constructions, an important role is played by the fact that the kernels of the corresponding convolutions of functions are nonnegative and by the properties of the normed algebras generated by these convolutions. That was the way the notion of hypercomplex system with continu ous basis appeared. A hypercomplex system is a normed algebra of functions on a locally compact space Q-the "basis" of this hypercomplex system. Later, similar objects, hypergroups, were introduced, which have complex-valued measures on Q as elements and convolution defined to be essentially the convolution of functionals and dual to the original convolution (if measures are regarded as functionals on the space of continuous functions on Q). However, until 1991, the time when this book was written in Russian, there were no monographs containing fundamentals of the theory (with an exception of a short section in the book by Yu. M. Berezansky and Yu. G. Kondratiev [BeKo]). The authors wanted to give an introduction to the theory and cover the most important subsequent results and examples.

Convex and Starlike Mappings in Several Complex Variables

Convex and Starlike Mappings in Several Complex Variables
Author: Sheng Gong
Publisher: Springer Science & Business Media
Total Pages: 220
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401152063

This book deals with the theory of convex and starlike biholomorphic mappings in several complex variables. The underlying theme is the extension to several complex variables of geometric aspects of the classical theory of univalent functions. This is the first book which systematically studies this topic. It gathers together, and presents in a unified manner, the current state of affairs for convex and starlike biholomorphic mappings in several complex variables. The majority of the results presented are due to the author, his co-workers and his students. Audience: This volume will be of interest to research mathematicians whose work involves several complex variables and one complex variable.