Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
Author: Percy Deift
Publisher: American Mathematical Soc.
Total Pages: 273
Release: 2000
Genre: Mathematics
ISBN: 0821826956

This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n times n matrices exhibit universal behavior as n > infinity? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.

Random Matrix Theory

Random Matrix Theory
Author: Percy Deift
Publisher: American Mathematical Soc.
Total Pages: 236
Release: 2009-01-01
Genre: Mathematics
ISBN: 0821883577

"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.

Special Functions 2000: Current Perspective and Future Directions

Special Functions 2000: Current Perspective and Future Directions
Author: Joaquin Bustoz
Publisher: Springer Science & Business Media
Total Pages: 548
Release: 2001
Genre: Mathematics
ISBN: 9780792371199

The Advanced Study Institute brought together researchers in the main areas of special functions and applications to present recent developments in the theory, review the accomplishments of past decades, and chart directions for future research. Some of the topics covered are orthogonal polynomials and special functions in one and several variables, asymptotic, continued fractions, applications to number theory, combinatorics and mathematical physics, integrable systems, harmonic analysis and quantum groups, Painleve classification.

Painleve Transcendents

Painleve Transcendents
Author: A. S. Fokas
Publisher: American Mathematical Soc.
Total Pages: 570
Release: 2006
Genre: Mathematics
ISBN: 082183651X

At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

Asymptotics for Orthogonal Polynomials

Asymptotics for Orthogonal Polynomials
Author: Walter Van Assche
Publisher: Springer
Total Pages: 207
Release: 2006-11-14
Genre: Mathematics
ISBN: 354047711X

Recently there has been a great deal of interest in the theory of orthogonal polynomials. The number of books treating the subject, however, is limited. This monograph brings together some results involving the asymptotic behaviour of orthogonal polynomials when the degree tends to infinity, assuming only a basic knowledge of real and complex analysis. An extensive treatment, starting with special knowledge of the orthogonality measure, is given for orthogonal polynomials on a compact set and on an unbounded set. Another possible approach is to start from properties of the coefficients in the three-term recurrence relation for orthogonal polynomials. This is done using the methods of (discrete) scattering theory. A new method, based on limit theorems in probability theory, to obtain asymptotic formulas for some polynomials is also given. Various consequences of all the results are described and applications are given ranging from random matrices and birth-death processes to discrete Schrödinger operators, illustrating the close interaction with different branches of applied mathematics.

Random Matrices and the Six-Vertex Model

Random Matrices and the Six-Vertex Model
Author: Pavel Bleher
Publisher: American Mathematical Soc.
Total Pages: 237
Release: 2013-12-04
Genre: Mathematics
ISBN: 1470409615

This book provides a detailed description of the Riemann-Hilbert approach (RH approach) to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and applications to random matrix models as well as to the six-vertex model. The RH approach was an important ingredient in the proofs of universality in unitary matrix models. This book gives an introduction to the unitary matrix models and discusses bulk and edge universality. The six-vertex model is an exactly solvable two-dimensional model in statistical physics, and thanks to the Izergin-Korepin formula for the model with domain wall boundary conditions, its partition function matches that of a unitary matrix model with nonpolynomial interaction. The authors introduce in this book the six-vertex model and include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly calculate the leading and subleading terms in the thermodynamic asymptotic behavior of the partition function of the six-vertex model with domain wall boundary conditions in all the three phases: disordered, ferroelectric, and antiferroelectric. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Orthogonal Polynomials

Orthogonal Polynomials
Author: Gabor Szegš
Publisher: American Mathematical Soc.
Total Pages: 448
Release: 1939-12-31
Genre: Mathematics
ISBN: 0821810235

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.

A Dynamical Approach to Random Matrix Theory

A Dynamical Approach to Random Matrix Theory
Author: László Erdős
Publisher: American Mathematical Soc.
Total Pages: 239
Release: 2017-08-30
Genre: Mathematics
ISBN: 1470436485

A co-publication of the AMS and the Courant Institute of Mathematical Sciences at New York University This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality. This manuscript has been developed and continuously improved over the last five years. The authors have taught this material in several regular graduate courses at Harvard, Munich, and Vienna, in addition to various summer schools and short courses. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.

An Introduction to Random Matrices

An Introduction to Random Matrices
Author: Greg W. Anderson
Publisher: Cambridge University Press
Total Pages: 507
Release: 2010
Genre: Mathematics
ISBN: 0521194520

A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

Skew-orthogonal Polynomials and Random Matrix Theory

Skew-orthogonal Polynomials and Random Matrix Theory
Author: Saugata Ghosh
Publisher: American Mathematical Soc.
Total Pages: 138
Release:
Genre: Mathematics
ISBN: 0821869884

"Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the use of the GCD promises to be efficient. Titles in this series are co-published with the Centre de Recherches Mathématiques."--Publisher's website.