Ordinary Differential Equations with Applications to Mechanics

Ordinary Differential Equations with Applications to Mechanics
Author: Mircea Soare
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2007-06-04
Genre: Mathematics
ISBN: 1402054408

This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

Ordinary Differential Equations with Applications to Mechanics

Ordinary Differential Equations with Applications to Mechanics
Author: Mircea Soare
Publisher: Springer
Total Pages: 0
Release: 2010-11-30
Genre: Mathematics
ISBN: 9789048173686

This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

Ordinary Differential Equations with Applications to Mechanics

Ordinary Differential Equations with Applications to Mechanics
Author: Mircea Soare
Publisher: Springer
Total Pages: 488
Release: 2009-09-03
Genre: Mathematics
ISBN: 9789048111107

This interdisciplinary work creates a bridge between the mathematical and the technical disciplines by providing a strong mathematical tool. The present book is a new, English edition of the volume published in 1999. It contains many improvements, as well as new topics, using enlarged and updated references. Only ordinary differential equations and their solutions in an analytical frame were considered, leaving aside their numerical approach.

Differential Equations, Mechanics, and Computation

Differential Equations, Mechanics, and Computation
Author: Richard S. Palais
Publisher: American Mathematical Soc.
Total Pages: 329
Release: 2009-11-13
Genre: Mathematics
ISBN: 0821821385

This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.

Ordinary Differential Equations with Applications

Ordinary Differential Equations with Applications
Author: Sze-Bi Hsu
Publisher: World Scientific
Total Pages: 258
Release: 2006
Genre: Mathematics
ISBN: 9812563199

During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based around the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook or as a valuable resource for researchers.

Ordinary Differential Equations

Ordinary Differential Equations
Author: Wolfgang Walter
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2013-03-11
Genre: Mathematics
ISBN: 1461206014

Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

Ordinary Differential Equations

Ordinary Differential Equations
Author: Morris Tenenbaum
Publisher: Courier Corporation
Total Pages: 852
Release: 1985-10-01
Genre: Mathematics
ISBN: 0486649407

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Differential Equations

Differential Equations
Author: Shepley L. Ross
Publisher: John Wiley & Sons
Total Pages: 736
Release: 1974
Genre: Mathematics
ISBN:

Fundamental methods and applications; Fundamental theory and further methods;

Applications of Lie Groups to Differential Equations

Applications of Lie Groups to Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
Total Pages: 524
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468402749

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.