Advances in Order Restricted Statistical Inference

Advances in Order Restricted Statistical Inference
Author: Richard Dykstra
Publisher: Springer Science & Business Media
Total Pages: 305
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461399408

With support from the University of Iowa and the Office of Naval Research. a small conference on order restricted inference was held at the University of Iowa in Iowa City in April of 1981. There were twenty-one participants. mostly from the midwest. and eleven talks were presented. A highlight of the conference was a talk by D. J. Bartholomew on. "Reflections on the past and thoughts about the future. " The conference was especially valuable because it brought together researchers who were thinking about related problems. A small conference on a limited topic is one of the best ways to stimulate research and facilitate collaboration. Because of the success of the first conference. a second conference was organized and held in September of 1985. This second conference was made possible again by support from the Office of Naval Research under Department of the Navy Contract NOOOI4-85-0161 and the University of Iowa. There were thirty-five participants and twenty presentations on a wide variety of topics dealing with order restricted inference at the second conference. This volume is a collection of fourteen of those presentations. By collecting together and organizing the fundamental results in order restricted inference in Statistical Inference under Order Restrictions. R. E. Barlow. D. J. Bartholomew. J. M. Bremner and H. D. Brunk have done much to stimulate research in this area. and so we wish to express our gratitude to them first.

Order Restricted Statistical Inference

Order Restricted Statistical Inference
Author: Tim Robertson
Publisher: John Wiley & Sons Incorporated
Total Pages: 521
Release: 1988
Genre: Psychology
ISBN: 9780471917878

This work attempts to provide a comprehensive treatment of the topic of statistical inference under inequality constraints, in which much of the theory is based on the principles ofr maximum likelihood estimation and likelihood ratio tests.

Constrained Statistical Inference

Constrained Statistical Inference
Author: Mervyn J. Silvapulle
Publisher: John Wiley & Sons
Total Pages: 560
Release: 2011-09-15
Genre: Mathematics
ISBN: 1118165632

An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal density function, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox, shrinkage estimation, and decision theory

Nonparametric Statistical Inference

Nonparametric Statistical Inference
Author: Jean Dickinson Gibbons
Publisher: CRC Press
Total Pages: 435
Release: 2020-12-22
Genre: Mathematics
ISBN: 1351616161

Praise for previous editions: "... a classic with a long history." – Statistical Papers "The fact that the first edition of this book was published in 1971 ... [is] testimony to the book’s success over a long period." – ISI Short Book Reviews "... one of the best books available for a theory course on nonparametric statistics. ... very well written and organized ... recommended for teachers and graduate students." – Biometrics "... There is no competitor for this book and its comprehensive development and application of nonparametric methods. Users of one of the earlier editions should certainly consider upgrading to this new edition." – Technometrics "... Useful to students and research workers ... a good textbook for a beginning graduate-level course in nonparametric statistics." – Journal of the American Statistical Association Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametrics. The Sixth Edition carries on this tradition and incorporates computer solutions based on R. Features Covers the most commonly used nonparametric procedures States the assumptions, develops the theory behind the procedures, and illustrates the techniques using realistic examples from the social, behavioral, and life sciences Presents tests of hypotheses, confidence-interval estimation, sample size determination, power, and comparisons of competing procedures Includes an Appendix of user-friendly tables needed for solutions to all data-oriented examples Gives examples of computer applications based on R, MINITAB, STATXACT, and SAS Lists over 100 new references Nonparametric Statistical Inference, Sixth Edition, has been thoroughly revised and rewritten to make it more readable and reader-friendly. All of the R solutions are new and make this book much more useful for applications in modern times. It has been updated throughout and contains 100 new citations, including some of the most recent, to make it more current and useful for researchers.

Statistical Inference Based on Divergence Measures

Statistical Inference Based on Divergence Measures
Author: Leandro Pardo
Publisher: CRC Press
Total Pages: 513
Release: 2018-11-12
Genre: Mathematics
ISBN: 1420034812

The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this p

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
Total Pages: 503
Release: 2018-09-20
Genre: Mathematics
ISBN: 1108563309

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Statistical Inference Under Order Restrictions

Statistical Inference Under Order Restrictions
Author:
Publisher:
Total Pages: 388
Release: 1972
Genre:
ISBN:

;Contents: Isotonic regression; Estimation under order restrictions; Testing the equality of ordered means--likelihood ratio tests in the normal case; Testing the equality of ordered means--extensions and generalizations; Estimation of distributions; Isotonic tests for goodness of fit; Conditional expectation given a sigma-lattice.

Essential Statistical Inference

Essential Statistical Inference
Author: Dennis D. Boos
Publisher: Springer Science & Business Media
Total Pages: 567
Release: 2013-02-06
Genre: Mathematics
ISBN: 1461448182

​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

Statistical Analysis of Contingency Tables

Statistical Analysis of Contingency Tables
Author: Morten Fagerland
Publisher: CRC Press
Total Pages: 593
Release: 2017-07-28
Genre: Mathematics
ISBN: 1315356554

Statistical Analysis of Contingency Tables is an invaluable tool for statistical inference in contingency tables. It covers effect size estimation, confidence intervals, and hypothesis tests for the binomial and the multinomial distributions, unpaired and paired 2x2 tables, rxc tables, ordered rx2 and 2xc tables, paired cxc tables, and stratified tables. For each type of table, key concepts are introduced, and a wide range of intervals and tests, including recent and unpublished methods and developments, are presented and evaluated. Topics such as diagnostic accuracy, inter-rater reliability, and missing data are also covered. The presentation is concise and easily accessible for readers with diverse professional backgrounds, with the mathematical details kept to a minimum. For more information, including a sample chapter and software, please visit the authors' website.