Optimizing Hyperparameters for Machine Learning Algorithms in Production

Optimizing Hyperparameters for Machine Learning Algorithms in Production
Author: Jonathan Krauß
Publisher: Apprimus Wissenschaftsverlag
Total Pages: 258
Release: 2022-04-13
Genre: Technology & Engineering
ISBN: 3985550743

Machine learning (ML) offers the potential to train data-based models and therefore to extract knowledge from data. Due to an increase in networking and digitalization, data and consequently the application of ML are growing in production. The creation of ML models includes several tasks that need to be conducted within data integration, data preparation, modeling, and deployment. One key design decision in this context is the selection of the hyperparameters of an ML algorithm – regardless of whether this task is conducted manually by a data scientist or automatically by an AutoML system. Therefore, data scientists and AutoML systems rely on hyperparameter optimization (HPO) techniques: algorithms that automatically identify good hyperparameters for ML algorithms. The selection of the HPO technique is of great relevance, since it can improve the final performance of an ML model by up to 62 % and reduce its errors by up to 95 %, compared to computing with default values. As the selection of the HPO technique depends on different domain-specific influences, it becomes more and more popular to use decision support systems to facilitate this selection. Since no approach exists, which covers the requirements from the production domain, the main research question of this thesis was: Can a decision support system be developed that supports in the selecting of HPO techniques in the production domain?

Automated Machine Learning

Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
Total Pages: 223
Release: 2019-05-17
Genre: Computers
ISBN: 3030053180

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Optimization for Machine Learning

Optimization for Machine Learning
Author: Jason Brownlee
Publisher: Machine Learning Mastery
Total Pages: 412
Release: 2021-09-22
Genre: Computers
ISBN:

Optimization happens everywhere. Machine learning is one example of such and gradient descent is probably the most famous algorithm for performing optimization. Optimization means to find the best value of some function or model. That can be the maximum or the minimum according to some metric. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will learn how to find the optimum point to numerical functions confidently using modern optimization algorithms.

Hyperparameter Optimization in Machine Learning

Hyperparameter Optimization in Machine Learning
Author: Tanay Agrawal
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN: 9781484265802

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods. This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script. Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. You will: Discover how changes in hyperparameters affect the model's performance. Apply different hyperparameter tuning algorithms to data science problems Work with Bayesian optimization methods to create efficient machine learning and deep learning models Distribute hyperparameter optimization using a cluster of machines Approach automated machine learning using hyperparameter optimization.

Machine Learning for Algorithmic Trading

Machine Learning for Algorithmic Trading
Author: Stefan Jansen
Publisher: Packt Publishing Ltd
Total Pages: 822
Release: 2020-07-31
Genre: Business & Economics
ISBN: 1839216786

Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Machine Learning with LightGBM and Python

Machine Learning with LightGBM and Python
Author: Andrich van Wyk
Publisher: Packt Publishing Ltd
Total Pages: 252
Release: 2023-09-29
Genre: Computers
ISBN: 1800563051

Take your software to the next level and solve real-world data science problems by building production-ready machine learning solutions using LightGBM and Python Key Features Get started with LightGBM, a powerful gradient-boosting library for building ML solutions Apply data science processes to real-world problems through case studies Elevate your software by building machine learning solutions on scalable platforms Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMachine Learning with LightGBM and Python is a comprehensive guide to learning the basics of machine learning and progressing to building scalable machine learning systems that are ready for release. This book will get you acquainted with the high-performance gradient-boosting LightGBM framework and show you how it can be used to solve various machine-learning problems to produce highly accurate, robust, and predictive solutions. Starting with simple machine learning models in scikit-learn, you’ll explore the intricacies of gradient boosting machines and LightGBM. You’ll be guided through various case studies to better understand the data science processes and learn how to practically apply your skills to real-world problems. As you progress, you’ll elevate your software engineering skills by learning how to build and integrate scalable machine-learning pipelines to process data, train models, and deploy them to serve secure APIs using Python tools such as FastAPI. By the end of this book, you’ll be well equipped to use various -of-the-art tools that will help you build production-ready systems, including FLAML for AutoML, PostgresML for operating ML pipelines using Postgres, high-performance distributed training and serving via Dask, and creating and running models in the Cloud with AWS Sagemaker.What you will learn Get an overview of ML and working with data and models in Python using scikit-learn Explore decision trees, ensemble learning, gradient boosting, DART, and GOSS Master LightGBM and apply it to classification and regression problems Tune and train your models using AutoML with FLAML and Optuna Build ML pipelines in Python to train and deploy models with secure and performant APIs Scale your solutions to production readiness with AWS Sagemaker, PostgresML, and Dask Who this book is forThis book is for software engineers aspiring to be better machine learning engineers and data scientists unfamiliar with LightGBM, looking to gain in-depth knowledge of its libraries. Basic to intermediate Python programming knowledge is required to get started with the book. The book is also an excellent source for ML veterans, with a strong focus on ML engineering with up-to-date and thorough coverage of platforms such as AWS Sagemaker, PostgresML, and Dask.

Design Patterns of Deep Learning with TensorFlow

Design Patterns of Deep Learning with TensorFlow
Author: Thomas V Joseph
Publisher: BPB Publications
Total Pages: 402
Release: 2024-06-06
Genre: Computers
ISBN: 9355516495

Architecting AI: Design patterns for building deep learning products KEY FEATURES ● Master foundational concepts in design patterns of deep learning. ● Benefit from practical insights shared by an industry professional. ● Learn to build data products using deep learning. DESCRIPTION Design Patterns of Deep Learning with TensorFlow is your comprehensive guide to learning deep learning from a design pattern perspective. In this book, we explore deep learning within the context of building hyper-personalization models, exploring its applications across various industries and scenarios. It starts by showing how deep learning enhances retail through customer segmentation and data analysis. You will learn neural networks, computer vision with CNNs, and NLP for analyzing customer behavior. This book addresses challenges like uneven data and optimizing models with techniques like backpropagation, hyperparameter tuning, and transfer learning. Finally, it covers setting up data pipelines and deploying your system. With practical tips and actionable advice, this book equips readers with the skills and strategies needed to thrive in today's competitive AI landscape. By the end of this book, you will be equipped with the knowledge and practical skills to build and deploy deep learning-powered hyper-personalization systems that deliver exceptional customer experiences. WHAT YOU WILL LEARN ● Understand about hyper-personalized AI models for tailored user experiences. ● Design principles of computer vision and NLP models. ● Inner working of transformers equipping readers to understand the intricacies of generative AI and large language models (LLMs) like ChatGPT. ● To get the best out of deep learning models through hyperparameter tuning and transfer learning. ● Learn how to build deployment pipelines to serve models into production environments seamlessly. WHO THIS BOOK IS FOR This book caters to both beginners and experienced practitioners in the field of data science and Machine Learning. Through practical examples, it simplifies complex ideas, linking them to design patterns. TABLE OF CONTENTS 1. Customer Hyper-personalization 2. Introduction to Design Patterns and Neural Networks 3. Design Patterns in Visual Representation Learning 4. Design Patterns for Non-Visual Representation Learning 5. Design Patterns for Transformers 6. Data Distribution Challenges and Strategies 7. Model Training Philosophies 8. Hyperparameter Tuning 9. Transfer Learning 10. Setting Up Data and Deployment Pipelines

Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures

Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures
Author: Erlend Alfnes
Publisher: Springer Nature
Total Pages: 872
Release: 2023-09-13
Genre: Computers
ISBN: 3031436709

This 4-volume set, IFIP AICT 689-692, constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2023, held in Trondheim, Norway, during September 17–21, 2023. The 213 full papers presented in these volumes were carefully reviewed and selected from a total of 224 submissions. They were organized in topical sections as follows: Part I : Lean Management in the Industry 4.0 Era; Crossroads and Paradoxes in the Digital Lean Manufacturing World; Digital Transformation Approaches in Production Management; Managing Digitalization of Production Systems; Workforce Evolutionary Pathways in Smart Manufacturing Systems; Next Generation Human-Centered Manufacturing and Logistics Systems for the Operator 5.0; and SME 5.0: Exploring Pathways to the Next Level of Intelligent, Sustainable, and Human-Centered SMEs. Part II : Digitally Enabled and Sustainable Service and Operations Management in PSS Lifecycle; Exploring Digital Servitization in Manufacturing; Everything-as-a-Service (XaaS) Business Models in the Manufacturing Industry; Digital Twin Concepts in Production and Services; Experiential Learning in Engineering Education; Lean in Healthcare; Additive Manufacturing in Operations and Supply Chain Management; and Applications of Artificial Intelligence in Manufacturing. Part III : Towards Next-Generation Production and SCM in Yard and Construction Industries; Transforming Engineer-to-Order Projects, Supply Chains and Ecosystems; Modelling Supply Chain and Production Systems; Advances in Dynamic Scheduling Technologies for Smart Manufacturing; and Smart Production Planning and Control. Part IV : Circular Manufacturing and Industrial Eco-Efficiency; Smart Manufacturing to Support Circular Economy; Product Information Management and Extended Producer Responsibility; Product and Asset Life Cycle Management for Sustainable and Resilient Manufacturing Systems; Sustainable Mass Customization in the Era of Industry 5.0; Food and Bio-Manufacturing; Battery Production Development and Management; Operations and SCM in Energy-Intensive Production for a Sustainable Future; and Resilience Management in Supply Chains.

Metaheuristics for Machine Learning

Metaheuristics for Machine Learning
Author: Kanak Kalita
Publisher: John Wiley & Sons
Total Pages: 357
Release: 2024-05-07
Genre: Computers
ISBN: 1394233922

METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.

Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action

Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action
Author: Duck Young Kim
Publisher: Springer Nature
Total Pages: 624
Release: 2022-09-18
Genre: Computers
ISBN: 3031164075

This two-volume set, IFIP AICT 663 and 664, constitutes the thoroughly refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2022, held in Gyeongju, South Korea in September 2022. The 139 full papers presented in these volumes were carefully reviewed and selected from a total of 153 submissions. The papers of APMS 2022 are organized into two parts. The topics of special interest in the first part included: AI & Data-driven Production Management; Smart Manufacturing & Industry 4.0; Simulation & Model-driven Production Management; Service Systems Design, Engineering & Management; Industrial Digital Transformation; Sustainable Production Management; and Digital Supply Networks. The second part included the following subjects: Development of Circular Business Solutions and Product-Service Systems through Digital Twins; “Farm-to-Fork” Production Management in Food Supply Chains; Urban Mobility and City Logistics; Digital Transformation Approaches in Production Management; Smart Supply Chain and Production in Society 5.0 Era; Service and Operations Management in the Context of Digitally-enabled Product-Service Systems; Sustainable and Digital Servitization; Manufacturing Models and Practices for Eco-Efficient, Circular and Regenerative Industrial Systems; Cognitive and Autonomous AI in Manufacturing and Supply Chains; Operators 4.0 and Human-Technology Integration in Smart Manufacturing and Logistics Environments; Cyber-Physical Systems for Smart Assembly and Logistics in Automotive Industry; and Trends, Challenges and Applications of Digital Lean Paradigm.