Optimization, Variational Analysis and Applications

Optimization, Variational Analysis and Applications
Author: Vivek Laha
Publisher: Springer Nature
Total Pages: 441
Release: 2021-07-27
Genre: Mathematics
ISBN: 9811618194

This book includes selected papers presented at the Indo-French Seminar on Optimization, Variational Analysis and Applications (IFSOVAA-2020), held at the Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India, from 2–4 February 2020. The book discusses current optimization problems and their solutions by using the powerful tool of variational analysis. Topics covered in this volume include set optimization, multiobjective optimization, mathematical programs with complementary, equilibrium, vanishing and switching constraints, copositive optimization, interval-valued optimization, sequential quadratic programming, bound-constrained optimization, variational inequalities, and more. Several applications in different branches of applied mathematics, engineering, economics, finance, and medical sciences have been included. Each chapter not only provides a detailed survey of the topic but also builds systematic theories and suitable algorithms to deduce the most recent findings in literature. This volume appeals to graduate students as well as researchers and practitioners in pure and applied mathematics and related fields that make use of variational analysis in solving optimization problems.

Variational Analysis in Sobolev and BV Spaces

Variational Analysis in Sobolev and BV Spaces
Author: Hedy Attouch
Publisher: SIAM
Total Pages: 794
Release: 2014-10-02
Genre: Mathematics
ISBN: 1611973473

This volume is an excellent guide for anyone interested in variational analysis, optimization, and PDEs. It offers a detailed presentation of the most important tools in variational analysis as well as applications to problems in geometry, mechanics, elasticity, and computer vision. This second edition covers several new topics: new section on capacity theory and elements of potential theory now includes the concepts of quasi-open sets and quasi-continuity; increased number of examples in the areas of linearized elasticity system, obstacles problems, convection-diffusion, and semilinear equations; new section on mass transportation problems and the Kantorovich relaxed formulation of the Monge problem; new subsection on stochastic homogenization establishes the mathematical tools coming from ergodic theory; and an entirely new and comprehensive chapter (17) devoted to gradient flows and the dynamical approach to equilibria. The book is intended for Ph.D. students, researchers, and practitioners who want to approach the field of variational analysis in a systematic way.

Variational Analysis and Applications

Variational Analysis and Applications
Author: Boris S. Mordukhovich
Publisher: Springer
Total Pages: 636
Release: 2018-08-02
Genre: Mathematics
ISBN: 3319927752

Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1–6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader’s development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7–10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.

Variational Analysis

Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
Total Pages: 747
Release: 2009-06-26
Genre: Mathematics
ISBN: 3642024319

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Techniques of Variational Analysis

Techniques of Variational Analysis
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
Total Pages: 368
Release: 2006-06-18
Genre: Mathematics
ISBN: 0387282718

Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic

Variational Analysis and Applications

Variational Analysis and Applications
Author: F. Giannessi
Publisher: Springer Science & Business Media
Total Pages: 1348
Release: 2005-06-14
Genre: Mathematics
ISBN: 9780387242095

This book discusses a new discipline, variational analysis, which contains the calculus of variations, differential calculus, optimization, and variational inequalities. To such classic branches of mathematics, variational analysis provides a uniform theoretical base that represents a powerful tool for the applications. The contributors are among the best experts in the field. Audience The target audience of this book includes scholars in mathematics (especially those in mathematical analysis), mathematical physics and applied mathematics, calculus of variations, optimization and operations research, industrial mathematics, structural engineering, and statistics and economics.

Computational Mathematics and Variational Analysis

Computational Mathematics and Variational Analysis
Author: Nicholas J. Daras
Publisher: Springer Nature
Total Pages: 564
Release: 2020-06-06
Genre: Mathematics
ISBN: 3030446255

This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Variational Methods in Shape Optimization Problems

Variational Methods in Shape Optimization Problems
Author: Dorin Bucur
Publisher: Springer Science & Business Media
Total Pages: 218
Release: 2006-09-13
Genre: Mathematics
ISBN: 0817644032

Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.

Variational Methods in Nonlinear Analysis

Variational Methods in Nonlinear Analysis
Author: Dimitrios C. Kravvaritis
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 584
Release: 2020-04-06
Genre: Mathematics
ISBN: 3110647451

This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.

Variational Analysis of Regular Mappings

Variational Analysis of Regular Mappings
Author: Alexander D. Ioffe
Publisher: Springer
Total Pages: 509
Release: 2017-10-26
Genre: Mathematics
ISBN: 3319642774

This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, which have proven to be highly efficient even in classical settings, and outlines the theory’s predominantly quantitative character, leading to a variety of new and unexpected applications. Variational Analysis of Regular Mappings is aimed at graduate students and researchers in nonlinear and functional analysis, especially those working in areas close to optimization and optimal control, and will be suitable to anyone interested in applying new concepts and ideas to operations research, control engineering and numerical analysis.