Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time
Author: Harold Kushner
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2013-11-27
Genre: Mathematics
ISBN: 146130007X

Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE
Author: Nizar Touzi
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2012-09-25
Genre: Mathematics
ISBN: 1461442869

This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​

Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
Total Pages: 231
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461263808

This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.

Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time
Author: Atle Seierstad
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2008-11-11
Genre: Mathematics
ISBN: 0387766162

This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Dynamic Management Decision And Stochastic Control Processes

Dynamic Management Decision And Stochastic Control Processes
Author: Toshio Odanaka
Publisher: World Scientific
Total Pages: 236
Release: 1990-01-01
Genre: Technology & Engineering
ISBN: 9814507121

This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
Total Pages: 666
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662126168

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
Total Pages: 436
Release: 2006-02-04
Genre: Mathematics
ISBN: 0387310711

This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Deterministic and Stochastic Optimal Control and Inverse Problems

Deterministic and Stochastic Optimal Control and Inverse Problems
Author: Baasansuren Jadamba
Publisher: CRC Press
Total Pages: 394
Release: 2021-12-15
Genre: Computers
ISBN: 1000511723

Inverse problems of identifying parameters and initial/boundary conditions in deterministic and stochastic partial differential equations constitute a vibrant and emerging research area that has found numerous applications. A related problem of paramount importance is the optimal control problem for stochastic differential equations. This edited volume comprises invited contributions from world-renowned researchers in the subject of control and inverse problems. There are several contributions on optimal control and inverse problems covering different aspects of the theory, numerical methods, and applications. Besides a unified presentation of the most recent and relevant developments, this volume also presents some survey articles to make the material self-contained. To maintain the highest level of scientific quality, all manuscripts have been thoroughly reviewed.

Stochastic Multi-Stage Optimization

Stochastic Multi-Stage Optimization
Author: Pierre Carpentier
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN: 9783319181394

The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.

Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time
Author: Harold Kushner
Publisher: Springer Science & Business Media
Total Pages: 436
Release: 2012-12-06
Genre: Science
ISBN: 1468404415

This book is concerned with numerical methods for stochastic control and optimal stochastic control problems. The random process models of the controlled or uncontrolled stochastic systems are either diffusions or jump diffusions. Stochastic control is a very active area of research and new prob lem formulations and sometimes surprising applications appear regularly. We have chosen forms of the models which cover the great bulk of the for mulations of the continuous time stochastic control problems which have appeared to date. The standard formats are covered, but much emphasis is given to the newer and less well known formulations. The controlled process might be either stopped or absorbed on leaving a constraint set or upon first hitting a target set, or it might be reflected or "projected" from the boundary of a constraining set. In some of the more recent applications of the reflecting boundary problem, for example the so-called heavy traffic approximation problems, the directions of reflection are actually discontin uous. In general, the control might be representable as a bounded function or it might be of the so-called impulsive or singular control types. Both the "drift" and the "variance" might be controlled. The cost functions might be any of the standard types: Discounted, stopped on first exit from a set, finite time, optimal stopping, average cost per unit time over the infinite time interval, and so forth.