Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension
Author: Giorgio Fabbri
Publisher: Springer
Total Pages: 928
Release: 2017-06-22
Genre: Mathematics
ISBN: 3319530674

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Optimal Control Theory for Infinite Dimensional Systems

Optimal Control Theory for Infinite Dimensional Systems
Author: Xungjing Li
Publisher: Springer Science & Business Media
Total Pages: 462
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461242606

Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa tions that are derived from certain physical laws, such as Newton's law, Fourier's law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.

Stability of Infinite Dimensional Stochastic Differential Equations with Applications

Stability of Infinite Dimensional Stochastic Differential Equations with Applications
Author: Kai Liu
Publisher: CRC Press
Total Pages: 311
Release: 2005-08-23
Genre: Mathematics
ISBN: 1420034820

Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics

Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics
Author: Wilfried Grecksch
Publisher: World Scientific
Total Pages: 261
Release: 2020-04-22
Genre: Science
ISBN: 9811209804

This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions

Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop and Closed-Loop Solutions
Author: Jingrui Sun
Publisher: Springer Nature
Total Pages: 129
Release: 2020-06-29
Genre: Mathematics
ISBN: 3030209229

This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents the results in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, it precisely identifies, for the first time, the interconnections between three well-known, relevant issues – the existence of optimal controls, solvability of the optimality system, and solvability of the associated Riccati equation. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.

An Introduction to Infinite-Dimensional Analysis

An Introduction to Infinite-Dimensional Analysis
Author: Giuseppe Da Prato
Publisher: Springer Science & Business Media
Total Pages: 217
Release: 2006-08-25
Genre: Mathematics
ISBN: 3540290214

Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.

Two-Scale Stochastic Systems

Two-Scale Stochastic Systems
Author: Yuri Kabanov
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662132427

Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.

Ergodicity for Infinite Dimensional Systems

Ergodicity for Infinite Dimensional Systems
Author: Giuseppe Da Prato
Publisher: Cambridge University Press
Total Pages: 355
Release: 1996-05-16
Genre: Mathematics
ISBN: 0521579007

This is the only book on stochastic modelling of infinite dimensional dynamical systems.

Mathematical Control Theory

Mathematical Control Theory
Author: Eduardo D. Sontag
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2013-11-21
Genre: Mathematics
ISBN: 1461205778

Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.