Optimal Control Of Continuous Time Stochastic Systems
Download Optimal Control Of Continuous Time Stochastic Systems full books in PDF, epub, and Kindle. Read online free Optimal Control Of Continuous Time Stochastic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Huyên Pham |
Publisher | : Springer Science & Business Media |
Total Pages | : 243 |
Release | : 2009-05-28 |
Genre | : Mathematics |
ISBN | : 3540895000 |
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.
Author | : Atle Seierstad |
Publisher | : Springer Science & Business Media |
Total Pages | : 299 |
Release | : 2008-11-11 |
Genre | : Mathematics |
ISBN | : 0387766162 |
This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.
Author | : Harold Kushner |
Publisher | : Springer Science & Business Media |
Total Pages | : 480 |
Release | : 2013-11-27 |
Genre | : Mathematics |
ISBN | : 146130007X |
Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.
Author | : Wendell H. Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 231 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461263808 |
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Author | : Dean A. Carlson |
Publisher | : Springer Science & Business Media |
Total Pages | : 270 |
Release | : 2013-06-29 |
Genre | : Business & Economics |
ISBN | : 3662025299 |
This monograph deals with various classes of deterministic continuous time optimal control problems wh ich are defined over unbounded time intervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking", "agreeable plans", etc. ; have been proposed. The motivation for studying these problems arisee primarily from the economic and biological aciences where models of this nature arise quite naturally since no natural bound can be placed on the time horizon when one considers the evolution of the state of a given economy or species. The reeponsibility for the introduction of this interesting class of problems rests with the economiste who first studied them in the modeling of capital accumulation processes. Perhaps the earliest of these was F. Ramsey who, in his seminal work on a theory of saving in 1928, considered a dynamic optimization model defined on an infinite time horizon. Briefly, this problem can be described as a "Lagrange problem with unbounded time interval". The advent of modern control theory, particularly the formulation of the famoue Maximum Principle of Pontryagin, has had a considerable impact on the treatment of these models as well as optimization theory in general.
Author | : Goong Chen |
Publisher | : CRC Press |
Total Pages | : 404 |
Release | : 1995-07-12 |
Genre | : Business & Economics |
ISBN | : 9780849380754 |
Linear Stochastic Control Systems presents a thorough description of the mathematical theory and fundamental principles of linear stochastic control systems. Both continuous-time and discrete-time systems are thoroughly covered. Reviews of the modern probability and random processes theories and the Itô stochastic differential equations are provided. Discrete-time stochastic systems theory, optimal estimation and Kalman filtering, and optimal stochastic control theory are studied in detail. A modern treatment of these same topics for continuous-time stochastic control systems is included. The text is written in an easy-to-understand style, and the reader needs only to have a background of elementary real analysis and linear deterministic systems theory to comprehend the subject matter. This graduate textbook is also suitable for self-study, professional training, and as a handy research reference. Linear Stochastic Control Systems is self-contained and provides a step-by-step development of the theory, with many illustrative examples, exercises, and engineering applications.
Author | : Dimitri P. Bertsekas |
Publisher | : |
Total Pages | : 323 |
Release | : 1961 |
Genre | : Dynamic programming |
ISBN | : 9780120932603 |
Author | : Jiongmin Yong |
Publisher | : Springer Science & Business Media |
Total Pages | : 459 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461214661 |
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.
Author | : Wendell H. Fleming |
Publisher | : Springer Science & Business Media |
Total Pages | : 436 |
Release | : 2006-02-04 |
Genre | : Mathematics |
ISBN | : 0387310711 |
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.
Author | : Oswaldo Luiz do Valle Costa |
Publisher | : Springer Science & Business Media |
Total Pages | : 295 |
Release | : 2012-12-18 |
Genre | : Mathematics |
ISBN | : 3642341004 |
It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory.