Optimal Control by Mathematical Programming
Author | : Daniel Tabak |
Publisher | : Prentice Hall |
Total Pages | : 264 |
Release | : 1971 |
Genre | : Mathematics |
ISBN | : |
Download Optimal Control By Mathematical Programming full books in PDF, epub, and Kindle. Read online free Optimal Control By Mathematical Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Daniel Tabak |
Publisher | : Prentice Hall |
Total Pages | : 264 |
Release | : 1971 |
Genre | : Mathematics |
ISBN | : |
Author | : Michael D. Canon |
Publisher | : New York ; Toronto : McGraw-Hill Book Company |
Total Pages | : 308 |
Release | : 1969 |
Genre | : Mathematics |
ISBN | : |
"This book has three basic aims: to present a unified theory of optimization, to introduce nonlinear programming algorithms to the control engineer, and to introduce the nonlinear programming expert to optimal control. This volume can be used either as a graduate text or as a reference text." --Preface.
Author | : Donald E. Kirk |
Publisher | : Courier Corporation |
Total Pages | : 466 |
Release | : 2012-04-26 |
Genre | : Technology & Engineering |
ISBN | : 0486135071 |
Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.
Author | : Jack Macki |
Publisher | : Springer Science & Business Media |
Total Pages | : 179 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461256712 |
This monograph is an introduction to optimal control theory for systems governed by vector ordinary differential equations. It is not intended as a state-of-the-art handbook for researchers. We have tried to keep two types of reader in mind: (1) mathematicians, graduate students, and advanced undergraduates in mathematics who want a concise introduction to a field which contains nontrivial interesting applications of mathematics (for example, weak convergence, convexity, and the theory of ordinary differential equations); (2) economists, applied scientists, and engineers who want to understand some of the mathematical foundations. of optimal control theory. In general, we have emphasized motivation and explanation, avoiding the "definition-axiom-theorem-proof" approach. We make use of a large number of examples, especially one simple canonical example which we carry through the entire book. In proving theorems, we often just prove the simplest case, then state the more general results which can be proved. Many of the more difficult topics are discussed in the "Notes" sections at the end of chapters and several major proofs are in the Appendices. We feel that a solid understanding of basic facts is best attained by at first avoiding excessive generality. We have not tried to give an exhaustive list of references, preferring to refer the reader to existing books or papers with extensive bibliographies. References are given by author's name and the year of publication, e.g., Waltman [1974].
Author | : John T. Betts |
Publisher | : SIAM |
Total Pages | : 442 |
Release | : 2010-01-01 |
Genre | : Mathematics |
ISBN | : 0898716888 |
A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.
Author | : John T. Betts |
Publisher | : SIAM |
Total Pages | : 748 |
Release | : 2020-07-09 |
Genre | : Mathematics |
ISBN | : 1611976197 |
How do you fly an airplane from one point to another as fast as possible? What is the best way to administer a vaccine to fight the harmful effects of disease? What is the most efficient way to produce a chemical substance? This book presents practical methods for solving real optimal control problems such as these. Practical Methods for Optimal Control Using Nonlinear Programming, Third Edition focuses on the direct transcription method for optimal control. It features a summary of relevant material in constrained optimization, including nonlinear programming; discretization techniques appropriate for ordinary differential equations and differential-algebraic equations; and several examples and descriptions of computational algorithm formulations that implement this discretize-then-optimize strategy. The third edition has been thoroughly updated and includes new material on implicit Runge–Kutta discretization techniques, new chapters on partial differential equations and delay equations, and more than 70 test problems and open source FORTRAN code for all of the problems. This book will be valuable for academic and industrial research and development in optimal control theory and applications. It is appropriate as a primary or supplementary text for advanced undergraduate and graduate students.
Author | : Daniel Liberzon |
Publisher | : Princeton University Press |
Total Pages | : 255 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 0691151873 |
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Author | : Daniel Tabak |
Publisher | : Prentice Hall |
Total Pages | : 264 |
Release | : 1971 |
Genre | : Mathematics |
ISBN | : |
Author | : Fredi Tröltzsch |
Publisher | : American Mathematical Society |
Total Pages | : 417 |
Release | : 2024-03-21 |
Genre | : Mathematics |
ISBN | : 1470476444 |
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.
Author | : L.D. Berkovitz |
Publisher | : Springer Science & Business Media |
Total Pages | : 315 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475760973 |
This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.