Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Springer Science & Business Media
Total Pages: 588
Release: 2009-05-21
Genre: Science
ISBN: 0817647554

This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Springer Science & Business Media
Total Pages: 586
Release: 2008-01-11
Genre: Science
ISBN: 0817647546

This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations
Author: Martino Bardi
Publisher: Birkhauser
Total Pages: 570
Release: 1997
Genre: Mathematics
ISBN: 0817636404

This book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamiltona "Jacobi type and its interplay with Bellmana (TM)s dynamic programming approach to optimal control and differential games, as it developed after the beginning of the 1980s with the pioneering work of M. Crandall and P.L. Lions. The book will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. In particular, it will appeal to system theorists wishing to learn about a mathematical theory providing a correct framework for the classical method of dynamic programming as well as mathematicians interested in new methods for first-order nonlinear PDEs. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book. "The exposition is self-contained, clearly written and mathematically precise. The exercises and open problemsa ]will stimulate research in the field. The rich bibliography (over 530 titles) and the historical notes provide a useful guide to the area." a " Mathematical Reviews "With an excellent printing and clear structure (including an extensive subject and symbol registry) the book offers a deep insight into the praxis and theory of optimal control for the mathematically skilled reader. All sections close with suggestions for exercisesa ]Finally, with more than 500 cited references, an overview on the history and the main works of this modern mathematical discipline is given." a " ZAA "The minimal mathematical background...the detailed and clear proofs, the elegant style of presentation, and the sets of proposed exercises at the end of each section recommend this book, in the first place, as a lecture course for graduate students and as a manual for beginners in the field. However, this status is largely extended by the presence of many advanced topics and results by the fairly comprehensive and up-to-date bibliography and, particularly, by the very pertinent historical and bibliographical comments at the end of each chapter. In my opinion, this book is yet another remarkable outcome of the brilliant Italian School of Mathematics." a " Zentralblatt MATH "The book is based on some lecture notes taught by the authors at several universities...and selected parts of it can be used for graduate courses in optimal control. But it can be also used as a reference text for researchers (mathematicians and engineers)...In writing this book, the authors lend a great service to the mathematical community providing an accessible and rigorous treatment of a difficult subject." a " Acta Applicandae Mathematicae

Hamilton-Jacobi-Bellman Equations

Hamilton-Jacobi-Bellman Equations
Author: Dante Kalise
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 245
Release: 2018-08-06
Genre: Mathematics
ISBN: 3110542714

Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme

Variational Calculus, Optimal Control and Applications

Variational Calculus, Optimal Control and Applications
Author: Leonhard Bittner
Publisher: Birkhäuser
Total Pages: 354
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034888023

The 12th conference on "Variational Calculus, Optimal Control and Applications" took place September 23-27, 1996, in Trassenheide on the Baltic Sea island of Use dom. Seventy mathematicians from ten countries participated. The preceding eleven conferences, too, were held in places of natural beauty throughout West Pomerania; the first time, in 1972, in Zinnowitz, which is in the immediate area of Trassenheide. The conferences were founded, and led ten times, by Professor Bittner (Greifswald) and Professor KlCitzler (Leipzig), who both celebrated their 65th birthdays in 1996. The 12th conference in Trassenheide, was, therefore, also dedicated to L. Bittner and R. Klotzler. Both scientists made a lasting impression on control theory in the former GDR. Originally, the conferences served to promote the exchange of research results. In the first years, most of the lectures were theoretical, but in the last few conferences practical applications have been given more attention. Besides their pioneering theoretical works, both honorees have also always dealt with applications problems. L. Bittner has, for example, examined optimal control of nuclear reactors and associated safety aspects. Since 1992 he has been working on applications in optimal control in flight dynamics. R. Klotzler recently applied his results on optimal autobahn planning to the south tangent in Leipzig. The contributions published in these proceedings reflect the trend to practical problems; starting points are often questions from flight dynamics.

Controlled Markov Processes and Viscosity Solutions

Controlled Markov Processes and Viscosity Solutions
Author: Wendell H. Fleming
Publisher: Springer Science & Business Media
Total Pages: 436
Release: 2006-02-04
Genre: Mathematics
ISBN: 0387310711

This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Controlled Diffusion Processes

Controlled Diffusion Processes
Author: N. V. Krylov
Publisher: Springer Science & Business Media
Total Pages: 314
Release: 2008-09-26
Genre: Science
ISBN: 3540709142

Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. ~urin~ that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in Wonham [76]). At the same time, Girsanov [25] and Howard [26] made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4]. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8], Mine and Osaki [55], and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.

Numerical Methods for Viscosity Solutions and Applications

Numerical Methods for Viscosity Solutions and Applications
Author: Maurizio Falcone
Publisher: World Scientific
Total Pages: 256
Release: 2001
Genre: Mathematics
ISBN: 9789812799807

Geometrical optics and viscosity solutions / A.-P. Blanc, G. T. Kossioris and G. N. Makrakis -- Computation of vorticity evolution for a cylindrical Type-II superconductor subject to parallel and transverse applied magnetic fields / A. Briggs ... [et al.] -- A characterization of the value function for a class of degenerate control problems / F. Camilli -- Some microstructures in three dimensions / M. Chipot and V. Lecuyer -- Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow / K. Deckelnick and G. Dziuk -- Optimal discretization steps in semi-lagrangian approximation of first-order PDEs / M. Falcone, R. Ferretti and T. Manfroni -- Convergence past singularities to the forced mean curvature flow for a modified reaction-diffusion approach / F. Fierro -- The viscosity-duality solutions approach to geometric pptics for the Helmholtz equation / L. Gosse and F. James -- Adaptive grid generation for evolutive Hamilton-Jacobi-Bellman equations / L. Grune -- Solution and application of anisotropic curvature driven evolution of curves (and surfaces) / K. Mikula -- An adaptive scheme on unstructured grids for the shape-from-shading problem / M. Sagona and A. Seghini -- On a posteriori error estimation for constant obstacle problems / A. Veeser.

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Author: Steven L. Brunton
Publisher: Cambridge University Press
Total Pages: 615
Release: 2022-05-05
Genre: Computers
ISBN: 1009098489

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations
Author: Maurizio Falcone
Publisher: SIAM
Total Pages: 331
Release: 2014-01-31
Genre: Mathematics
ISBN: 161197304X

This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.