Operator Inequalities
Author | : Schroder |
Publisher | : Academic Press |
Total Pages | : 384 |
Release | : 1980-09-01 |
Genre | : Computers |
ISBN | : 0080956556 |
Operator Inequalities
Download Operator Inequalities full books in PDF, epub, and Kindle. Read online free Operator Inequalities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Schroder |
Publisher | : Academic Press |
Total Pages | : 384 |
Release | : 1980-09-01 |
Genre | : Computers |
ISBN | : 0080956556 |
Operator Inequalities
Author | : Silvestru Sever Dragomir |
Publisher | : Springer Science & Business Media |
Total Pages | : 121 |
Release | : 2011-12-08 |
Genre | : Mathematics |
ISBN | : 1461417791 |
Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski’s type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.
Author | : Silvestru Sever Dragomir |
Publisher | : Springer Science & Business Media |
Total Pages | : 134 |
Release | : 2011-11-12 |
Genre | : Mathematics |
ISBN | : 1461415217 |
The main aim of this book is to present recent results concerning inequalities of the Jensen, Čebyšev and Grüss type for continuous functions of bounded selfadjoint operators on complex Hilbert spaces. In the introductory chapter, the author portrays fundamental facts concerning bounded selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive selfadjoint operators as well as some results for the spectrum of this class of operators are presented. This text introduces the reader to the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators as well as the step functions of selfadjoint operators. The spectral decomposition for this class of operators, which play a central role in the rest of the book and its consequences are introduced. At the end of the chapter, some classical operator inequalities are presented as well. Recent new results that deal with different aspects of the famous Jensen operator inequality are explored through the second chapter. These include but are not limited to the operator version of the Dragomir-Ionescu inequality, the Slater type inequalities for operators and its inverses, Jensen’s inequality for twice differentiable functions whose second derivatives satisfy some upper and lower bound conditions and Jensen’s type inequalities for log-convex functions. Hermite-Hadamard’s type inequalities for convex functions and the corresponding results for operator convex functions are also presented. The Čebyšev, (Chebyshev) inequality that compares the integral/discrete mean of the product with the product of the integral/discrete means is famous in the literature devoted to Mathematical Inequalities. The sister inequality due to Grüss which provides error bounds for the magnitude of the difference between the integral mean of the product and the product of the integral means has also attracted much interest since it has been discovered in 1935 with more than 200 papers published so far. The last part of the book is devoted to the operator versions of these famous results for continuous functions of selfadjoint operators on complex Hilbert spaces. Various particular cases of interest and related results are presented as well. This book is intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Author | : Mohammad Sal Moslehian |
Publisher | : Springer Nature |
Total Pages | : 763 |
Release | : 2023-07-29 |
Genre | : Mathematics |
ISBN | : 3031253868 |
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Author | : Richard M. Aron |
Publisher | : Springer Nature |
Total Pages | : 822 |
Release | : 2022-08-10 |
Genre | : Mathematics |
ISBN | : 3031021045 |
Inequalities play a central role in mathematics with various applications in other disciplines. The main goal of this contributed volume is to present several important matrix, operator, and norm inequalities in a systematic and self-contained fashion. Some powerful methods are used to provide significant mathematical inequalities in functional analysis, operator theory and numerous fields in recent decades. Some chapters are devoted to giving a series of new characterizations of operator monotone functions and some others explore inequalities connected to log-majorization, relative operator entropy, and the Ando-Hiai inequality. Several chapters are focused on Birkhoff–James orthogonality and approximate orthogonality in Banach spaces and operator algebras such as C*-algebras from historical perspectives to current development. A comprehensive account of the boundedness, compactness, and restrictions of Toeplitz operators can be found in the book. Furthermore, an overview of the Bishop-Phelps-Bollobás theorem is provided. The state-of-the-art of Hardy-Littlewood inequalities in sequence spaces is given. The chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
Author | : Hideki Kosaki |
Publisher | : American Mathematical Soc. |
Total Pages | : 93 |
Release | : 2011-06-10 |
Genre | : Mathematics |
ISBN | : 0821853074 |
Positive definiteness is determined for a wide class of functions relevant in the study of operator means and their norm comparisons. Then, this information is used to obtain an abundance of new sharp (unitarily) norm inequalities comparing various operator means and sometimes other related operators.
Author | : Gabriel Acosta |
Publisher | : Springer |
Total Pages | : 132 |
Release | : 2017-03-01 |
Genre | : Mathematics |
ISBN | : 1493969854 |
This Brief is mainly devoted to two classical and related results: the existence of a right inverse of the divergence operator and the so-called Korn Inequalities. It is well known that both results are fundamental tools in the analysis of some classic differential equations, particularly in those arising in fluid dynamics and elasticity. Several connections between these two topics and improved Poincaré inequalities are extensively treated. From simple key ideas the book is growing smoothly in complexity. Beginning with the study of these problems on star-shaped domains the arguments are extended first to John domains and then to Hölder α domains where the need of weighted spaces arises naturally. In this fashion, the authors succeed in presenting in an unified and concise way several classic and recent developments in the field. These features certainly makes this Brief useful for students, post-graduate students, and researchers as well.
Author | : Yeol Je Cho |
Publisher | : Nova Publishers |
Total Pages | : 200 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : 9781594548741 |
The aim of this volume is to introduce and exchange recent new topics on the areas of inequality theory and their applications dealing in pure and applied mathematics.
Author | : Silvestru Sever Dragomir |
Publisher | : Springer Science & Business Media |
Total Pages | : 130 |
Release | : 2013-09-14 |
Genre | : Mathematics |
ISBN | : 331901448X |
Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Grüss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned.
Author | : Elliott H. Lieb |
Publisher | : Springer Science & Business Media |
Total Pages | : 687 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642559255 |
Inequalities play a fundamental role in Functional Analysis and it is widely recognized that finding them, especially sharp estimates, is an art. E. H. Lieb has discovered a host of inequalities that are enormously useful in mathematics as well as in physics. His results are collected in this book which should become a standard source for further research. Together with the mathematical proofs the author also presents numerous applications to the calculus of variations and to many problems of quantum physics, in particular to atomic physics.