Operator B

Operator B
Author: Edward Lee
Publisher: Crossroad Press
Total Pages: 133
Release: 2022-01-14
Genre: Fiction
ISBN:

Operator "A" is dead. In 1989, the United States Military recovered a crashed vehicle of extraterrestrial origin. Ten years later, the vehicle is operational again. Willard Farrington, the best pilot in the world, has just committed suicide. Why? Air Force General Jack Wentz will find out soon enough, but for now he has willingly stepped into Farrington's coveted boots. What Wentz will be offered is any test pilot's dream beyond all imagination. And Wentz's dream comes true. But there's a catch... Within the secret warrens of the Pentagon and amongst military cells unknown even to the President and the Congress, Wentz has just been designated Operator "B". With his mind and his body, he will assume an unfathomable sacrifice. He will assume the role of the best pilot on the surface of the Earth. Wentz will give up everything: his wife, his child, and the kind of life most people yearn for. He cuts it all loose... for this final mission and ultimate gesture of duty. Only when it's too late does General Wentz realize the full price he must pay... to become Operator "B".

Hilbert Space Operators in Quantum Physics

Hilbert Space Operators in Quantum Physics
Author: Jirí Blank
Publisher: Springer Science & Business Media
Total Pages: 677
Release: 2008-09-24
Genre: Science
ISBN: 1402088701

The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.

A Course in Operator Theory

A Course in Operator Theory
Author: John B. Conway
Publisher: American Mathematical Soc.
Total Pages: 390
Release: 2000
Genre: Mathematics
ISBN: 0821820656

Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I
Author: Israel Gohberg
Publisher: Birkhäuser
Total Pages: 479
Release: 2013-03-09
Genre: Mathematics
ISBN: 3034875096

After the book "Basic Operator Theory" by Gohberg-Goldberg was pub lished, we, that is the present authors, intended to continue with another book which would show the readers the large variety of classes of operators and the important role they play in applications. The book was planned to be of modest size, but due to the profusion of results in this area of analysis, the number of topics grew larger than ex pected. Consequently, we decided to divide the material into two volumes - the first volume being presented now. During the past years, courses and seminars were given at our respective in stitutions based on parts of the texts. These were well received by the audience and enabled us to make appropriate choices for the topics and presentation for the two vol umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections. We are now aware that the Basic Operator Theory book should be revised so that it may suitably fit in with our present volumes. This revision is planned to be the last step of an induction and not the first.

Spectral Geometry of Partial Differential Operators

Spectral Geometry of Partial Differential Operators
Author: Michael Ruzhansky
Publisher: CRC Press
Total Pages: 366
Release: 2020-02-07
Genre: Mathematics
ISBN: 0429780575

The aim of Spectral Geometry of Partial Differential Operators is to provide a basic and self-contained introduction to the ideas underpinning spectral geometric inequalities arising in the theory of partial differential equations. Historically, one of the first inequalities of the spectral geometry was the minimization problem of the first eigenvalue of the Dirichlet Laplacian. Nowadays, this type of inequalities of spectral geometry have expanded to many other cases with number of applications in physics and other sciences. The main reason why the results are useful, beyond the intrinsic interest of geometric extremum problems, is that they produce a priori bounds for spectral invariants of (partial differential) operators on arbitrary domains. Features: Collects the ideas underpinning the inequalities of the spectral geometry, in both self-adjoint and non-self-adjoint operator theory, in a way accessible by anyone with a basic level of understanding of linear differential operators Aimed at theoretical as well as applied mathematicians, from a wide range of scientific fields, including acoustics, astronomy, MEMS, and other physical sciences Provides a step-by-step guide to the techniques of non-self-adjoint partial differential operators, and for the applications of such methods. Provides a self-contained coverage of the traditional and modern theories of linear partial differential operators, and does not require a previous background in operator theory.