Operator Analysis
Download Operator Analysis full books in PDF, epub, and Kindle. Read online free Operator Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jim Agler |
Publisher | : Cambridge University Press |
Total Pages | : 393 |
Release | : 2020-03-26 |
Genre | : Mathematics |
ISBN | : 1108485448 |
This monograph, aimed at graduate students and researchers, explores the use of Hilbert space methods in function theory. Explaining how operator theory interacts with function theory in one and several variables, the authors journey from an accessible explanation of the techniques to their uses in cutting edge research.
Author | : Heinz H. Bauschke |
Publisher | : Springer |
Total Pages | : 624 |
Release | : 2017-02-28 |
Genre | : Mathematics |
ISBN | : 3319483110 |
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Author | : Themistocles M. Rassias |
Publisher | : Springer |
Total Pages | : 416 |
Release | : 2020-09-03 |
Genre | : Mathematics |
ISBN | : 9783030126636 |
Dedicated to Tosio Kato’s 100th birthday, this book contains research and survey papers on a broad spectrum of methods, theories, and problems in mathematics and mathematical physics. Survey papers and in-depth technical papers emphasize linear and nonlinear analysis, operator theory, partial differential equations, and functional analysis including nonlinear evolution equations, the Korteweg–de Vries equation, the Navier–Stokes equation, and perturbation theory of linear operators. The Kato inequality, the Kato type matrix limit theorem, the Howland–Kato commutator problem, the Kato-class of potentials, and the Trotter–Kato product formulae are discussed and analyzed. Graduate students, research mathematicians, and applied scientists will find that this book provides comprehensive insight into the significance of Tosio Kato’s impact to research in analysis and operator theory.
Author | : Béla Sz Nagy |
Publisher | : Springer Science & Business Media |
Total Pages | : 481 |
Release | : 2010-09-01 |
Genre | : Mathematics |
ISBN | : 1441960937 |
The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.
Author | : Barry Simon |
Publisher | : |
Total Pages | : 749 |
Release | : 2015 |
Genre | : Mathematical analysis |
ISBN | : 9781470411039 |
A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis
Author | : M. Amélia Bastos |
Publisher | : Birkhäuser |
Total Pages | : 657 |
Release | : 2021-04-01 |
Genre | : Mathematics |
ISBN | : 9783030519445 |
This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Author | : Alexey N. Karapetyants |
Publisher | : Springer Nature |
Total Pages | : 585 |
Release | : 2021-09-27 |
Genre | : Mathematics |
ISBN | : 3030774937 |
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
Author | : Erdogan Madenci |
Publisher | : Springer |
Total Pages | : 287 |
Release | : 2019-01-17 |
Genre | : Science |
ISBN | : 3030026477 |
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson’s and Navier’s equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.
Author | : Albrecht Böttcher |
Publisher | : Springer Science & Business Media |
Total Pages | : 511 |
Release | : 2013-06-29 |
Genre | : Mathematics |
ISBN | : 366202652X |
A revised introduction to the advanced analysis of block Toeplitz operators including recent research. This book builds on the success of the first edition which has been used as a standard reference for fifteen years. Topics range from the analysis of locally sectorial matrix functions to Toeplitz and Wiener-Hopf determinants. This will appeal to both graduate students and specialists in the theory of Toeplitz operators.
Author | : Carlos S. Kubrusly |
Publisher | : Springer Science & Business Media |
Total Pages | : 535 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475733283 |
{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.