Big Data Analytics in Supply Chain Management

Big Data Analytics in Supply Chain Management
Author: Iman Rahimi
Publisher: CRC Press
Total Pages: 211
Release: 2020-12-20
Genre: Computers
ISBN: 1000326918

In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems.

Operations Research and Big Data

Operations Research and Big Data
Author: Ana Paula Ferreira Dias Barbosa Póvoa
Publisher: Springer
Total Pages: 255
Release: 2015-09-11
Genre: Technology & Engineering
ISBN: 3319241540

The development of Operations Research (OR) requires constant improvements, such as the integration of research results with business applications and innovative educational practice. The full deployment and commercial exploitation of goods and services generally need the construction of strong synergies between educational institutions and businesses. The IO2015 -XVII Congress of APDIO aims at strengthening the knowledge triangle in education, research and innovation, in order to maximize the contribution of OR for sustainable growth, the promoting of a knowledge-based economy, and the smart use of finite resources. The IO2015-XVII Congress of APDIO is a privileged meeting point for the promotion and dissemination of OR and related disciplines, through the exchange of ideas among teachers, researchers, students , and professionals with different background, but all sharing a common desire that is the development of OR.

Big Data Analytics Using Multiple Criteria Decision-Making Models

Big Data Analytics Using Multiple Criteria Decision-Making Models
Author: Ramakrishnan Ramanathan
Publisher: CRC Press
Total Pages: 435
Release: 2017-07-12
Genre: Computers
ISBN: 1351648691

Multiple Criteria Decision Making (MCDM) is a subfield of Operations Research, dealing with decision making problems. A decision-making problem is characterized by the need to choose one or a few among a number of alternatives. The field of MCDM assumes special importance in this era of Big Data and Business Analytics. In this volume, the focus will be on modelling-based tools for Business Analytics (BA), with exclusive focus on the sub-field of MCDM within the domain of operations research. The book will include an Introduction to Big Data and Business Analytics, and challenges and opportunities for developing MCDM models in the era of Big Data.

Big Data Management

Big Data Management
Author: Fausto Pedro García Márquez
Publisher: Springer
Total Pages: 274
Release: 2016-11-15
Genre: Computers
ISBN: 3319454986

This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.

Big Data Meets Survey Science

Big Data Meets Survey Science
Author: Craig A. Hill
Publisher: John Wiley & Sons
Total Pages: 784
Release: 2020-09-29
Genre: Social Science
ISBN: 1118976320

Offers a clear view of the utility and place for survey data within the broader Big Data ecosystem This book presents a collection of snapshots from two sides of the Big Data perspective. It assembles an array of tangible tools, methods, and approaches that illustrate how Big Data sources and methods are being used in the survey and social sciences to improve official statistics and estimates for human populations. It also provides examples of how survey data are being used to evaluate and improve the quality of insights derived from Big Data. Big Data Meets Survey Science: A Collection of Innovative Methods shows how survey data and Big Data are used together for the benefit of one or more sources of data, with numerous chapters providing consistent illustrations and examples of survey data enriching the evaluation of Big Data sources. Examples of how machine learning, data mining, and other data science techniques are inserted into virtually every stage of the survey lifecycle are presented. Topics covered include: Total Error Frameworks for Found Data; Performance and Sensitivities of Home Detection on Mobile Phone Data; Assessing Community Wellbeing Using Google Street View and Satellite Imagery; Using Surveys to Build and Assess RBS Religious Flag; and more. Presents groundbreaking survey methods being utilized today in the field of Big Data Explores how machine learning methods can be applied to the design, collection, and analysis of social science data Filled with examples and illustrations that show how survey data benefits Big Data evaluation Covers methods and applications used in combining Big Data with survey statistics Examines regulations as well as ethical and privacy issues Big Data Meets Survey Science: A Collection of Innovative Methods is an excellent book for both the survey and social science communities as they learn to capitalize on this new revolution. It will also appeal to the broader data and computer science communities looking for new areas of application for emerging methods and data sources.

Big Data Optimization: Recent Developments and Challenges

Big Data Optimization: Recent Developments and Challenges
Author: Ali Emrouznejad
Publisher: Springer
Total Pages: 492
Release: 2016-05-26
Genre: Technology & Engineering
ISBN: 3319302655

The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.

Behavioral Operational Research

Behavioral Operational Research
Author: Martin Kunc
Publisher: Springer
Total Pages: 412
Release: 2016-06-29
Genre: Business & Economics
ISBN: 1137535512

Behavioral research is making a significant impact on many academic disciplines. Its status as the source of some of the most profound research in the social sciences is unparalleled. Therefore, it is not surprising that interest in Behavior and Operational Research (OR) is burgeoning, even though understanding the relationship between knowledge, behavior and action has been an academic preoccupation in OR since the beginning of the discipline. This book introduces the idea of Behavioral OR, where the theoretical and empirical developments in the behavioral field are making an impression on OR academics and practitioners alike. The book provides a much needed overview that connects together theory, methodology and practice and offers the “state of the art” on Behavioral Operational Research theory and practice. The book not only includes chapters by leading academics, but also includes rich and insightful real-life case studies by practitioners.

Neural Networks: Tricks of the Trade

Neural Networks: Tricks of the Trade
Author: Grégoire Montavon
Publisher: Springer
Total Pages: 753
Release: 2012-11-14
Genre: Computers
ISBN: 3642352898

The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Data-Enabled Analytics

Data-Enabled Analytics
Author: Joe Zhu
Publisher: Springer Nature
Total Pages: 370
Release: 2021-12-16
Genre: Business & Economics
ISBN: 3030751627

This book explores the novel uses and potentials of Data Envelopment Analysis (DEA) under big data. These areas are of widespread interest to researchers and practitioners alike. Considering the vast literature on DEA, one could say that DEA has been and continues to be, a widely used technique both in performance and productivity measurement, having covered a plethora of challenges and debates within the modelling framework.

Analytics in Operations/Supply Chain Management

Analytics in Operations/Supply Chain Management
Author: Muthu Mathirajan
Publisher:
Total Pages: 0
Release: 2016-03-30
Genre: Business logistics
ISBN: 9789384588946

Efficient and effective operations/supply chain management is pivotal to an organisation's success in today's competitive global environment. This Symposium Proceedings focuses on the role of analytics in operations /supply chain management, particularly in the context of multi criteria decision making. It highlights emerging concepts and potential applications.