Operational Subjective Statistical Methods
Download Operational Subjective Statistical Methods full books in PDF, epub, and Kindle. Read online free Operational Subjective Statistical Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Frank Lad |
Publisher | : Wiley-Interscience |
Total Pages | : 516 |
Release | : 1996-09-27 |
Genre | : Mathematics |
ISBN | : |
The mathematical implications of personal beliefs and values in science and commerce Amid a worldwide resurgence of interest in subjectivist statistical method, this book offers a fresh look at the role of personal judgments in statistical analysis. Frank Lad demonstrates how philosophical attention to meaning provides a sensible assessment of the prospects and procedures of empirical inferential learning. Operational Subjective Statistical Methods offers a systematic investigation of Bruno de Finetti's theory of probability and logic of uncertainty, which recognizes probability as the measure of personal uncertainty at the heart of its mathematical presentation. It identifies de Finetti's "fundamental theorem of coherent provision" as the unifying structure of probabilistic logic, and highlights the judgment of exchangeability rather than causal independence as the key probabilistic component of statistical inference. Broad in scope, yet firmly grounded in mathematical detail, this text/reference Invites readers to address the subjective personalist meaning of probability as motivating the mathematical construction Contains numerous examples and problems, including computing problems using Matlab, assuming no background in Matlab Explains how to use the material in three distinct sequential courses in math and statistics, as well as in courses at the graduate level in applied fields Provides an introductory basis for understanding more complex structures of statistical analysis Complete with fifty illustrations, Operational Subjective Statistical Methods makes an intriguing discipline accessible to professionals, students, and the interested general reader. It contains a wealth of teaching and research material, and offers profound insight into the relationship between philosophy, faith, and scientific method.
Author | : Elisa T. Lee |
Publisher | : John Wiley & Sons |
Total Pages | : 389 |
Release | : 2013-09-23 |
Genre | : Mathematics |
ISBN | : 1118593057 |
Praise for the Third Edition “. . . an easy-to read introduction to survival analysis which covers the major concepts and techniques of the subject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments, Statistical Methods for Survival Data Analysis, Fourth Edition continues to deliver a comprehensive introduction to the most commonly-used methods for analyzing survival data. Authored by a uniquely well-qualified author team, the Fourth Edition is a critically acclaimed guide to statistical methods with applications in clinical trials, epidemiology, areas of business, and the social sciences. The book features many real-world examples to illustrate applications within these various fields, although special consideration is given to the study of survival data in biomedical sciences. Emphasizing the latest research and providing the most up-to-date information regarding software applications in the field, Statistical Methods for Survival Data Analysis, Fourth Edition also includes: Marginal and random effect models for analyzing correlated censored or uncensored data Multiple types of two-sample and K-sample comparison analysis Updated treatment of parametric methods for regression model fitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of the presented material Statistical Methods for Survival Data Analysis is an ideal text for upper-undergraduate and graduate-level courses on survival data analysis. The book is also an excellent resource for biomedical investigators, statisticians, and epidemiologists, as well as researchers in every field in which the analysis of survival data plays a role.
Author | : Bovas Abraham |
Publisher | : John Wiley & Sons |
Total Pages | : 474 |
Release | : 2009-09-25 |
Genre | : Mathematics |
ISBN | : 0470317299 |
The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book, it must be said, lives up to the words on its advertising cover: 'Bridging the gap between introductory, descriptive approaches and highly advanced theoretical treatises, it provides a practical, intermediate level discussion of a variety of forecasting tools, and explains how they relate to one another, both in theory and practice.' It does just that!" -Journal of the Royal Statistical Society "A well-written work that deals with statistical methods and models that can be used to produce short-term forecasts, this book has wide-ranging applications. It could be used in the context of a study of regression, forecasting, and time series analysis by PhD students; or to support a concentration in quantitative methods for MBA students; or as a work in applied statistics for advanced undergraduates." -Choice Statistical Methods for Forecasting is a comprehensive, readable treatment of statistical methods and models used to produce short-term forecasts. The interconnections between the forecasting models and methods are thoroughly explained, and the gap between theory and practice is successfully bridged. Special topics are discussed, such as transfer function modeling; Kalman filtering; state space models; Bayesian forecasting; and methods for forecast evaluation, comparison, and control. The book provides time series, autocorrelation, and partial autocorrelation plots, as well as examples and exercises using real data. Statistical Methods for Forecasting serves as an outstanding textbook for advanced undergraduate and graduate courses in statistics, business, engineering, and the social sciences, as well as a working reference for professionals in business, industry, and government.
Author | : Joseph L. Fleiss |
Publisher | : John Wiley & Sons |
Total Pages | : 585 |
Release | : 2013-06-12 |
Genre | : Medical |
ISBN | : 1118625617 |
Das für Fachleute und fortgeschrittene Studenten konzipierte Buch beschäftigt sich mit dem Entwurf und der Analyse von Untersuchungen, Studien und Experimenten, bei denen qualitative und kategorische Daten anfallen. - jetzt in dritter Auflage - neue Informationen unter anderem zur logistischen Regression, zur Binomialverteilung, zu Daten von (zufälligen) Stichproben und zu den Delta-Methoden für Multinomialfrequenzen - Buch ist auf seinem Gebiet führend, das bewährte Material der Vorgängerauflagen wurde übernommen
Author | : Thomas P. Ryan |
Publisher | : John Wiley & Sons |
Total Pages | : 578 |
Release | : 2011-09-20 |
Genre | : Technology & Engineering |
ISBN | : 1118058100 |
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.
Author | : Jan Beirlant |
Publisher | : John Wiley & Sons |
Total Pages | : 516 |
Release | : 2004-10-15 |
Genre | : Mathematics |
ISBN | : 9780471976479 |
Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.
Author | : David J. Marchette |
Publisher | : John Wiley & Sons |
Total Pages | : 261 |
Release | : 2005-02-11 |
Genre | : Mathematics |
ISBN | : 0471722081 |
A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.
Author | : Elena Kulinskaya |
Publisher | : John Wiley & Sons |
Total Pages | : 293 |
Release | : 2008-04-14 |
Genre | : Mathematics |
ISBN | : 0470028645 |
Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence acts as a source of basic methods for scientists wanting to combine evidence from different experiments. The authors aim to promote a deeper understanding of the notion of statistical evidence. The book is comprised of two parts – The Handbook, and The Theory. The Handbook is a guide for combining and interpreting experimental evidence to solve standard statistical problems. This section allows someone with a rudimentary knowledge in general statistics to apply the methods. The Theory provides the motivation, theory and results of simulation experiments to justify the methodology. This is a coherent introduction to the statistical concepts required to understand the authors’ thesis that evidence in a test statistic can often be calibrated when transformed to the right scale.
Author | : Glen MacDonald |
Publisher | : John Wiley & Sons |
Total Pages | : 536 |
Release | : 2002-02-28 |
Genre | : Science |
ISBN | : 0471241938 |
Illustrative examples from recent research publications and "classic" studies are prominently featured throughout the book. Research techniques are highlighted in "special interest" boxes. Illustrations and descriptions of research techniques are provided with examples such as fire-scars from trees used to reconstruct disturbance, fossil pollen used to reconstruct vegetation change and plant migration, transect and quadrate sampling. Includes key biogeographical theories that link space and time to the distribution of life. Some of these theories include: 1. Ranges, Reflicts, Refuges, Corridors, Barriers, 2. Centers of Origins, 3. Cladistics, 4. Variance, 5. Island BioGeography, 6. Diversity Theory, 7. Gap Analysis for Conservation.
Author | : Norman R. Draper |
Publisher | : John Wiley & Sons |
Total Pages | : 736 |
Release | : 2014-08-25 |
Genre | : Mathematics |
ISBN | : 1118625684 |
An outstanding introduction to the fundamentals of regression analysis-updated and expanded The methods of regression analysis are the most widely used statistical tools for discovering the relationships among variables. This classic text, with its emphasis on clear, thorough presentation of concepts and applications, offers a complete, easily accessible introduction to the fundamentals of regression analysis. Assuming only a basic knowledge of elementary statistics, Applied Regression Analysis, Third Edition focuses on the fitting and checking of both linear and nonlinear regression models, using small and large data sets, with pocket calculators or computers. This Third Edition features separate chapters on multicollinearity, generalized linear models, mixture ingredients, geometry of regression, robust regression, and resampling procedures. Extensive support materials include sets of carefully designed exercises with full or partial solutions and a series of true/false questions with answers. All data sets used in both the text and the exercises can be found on the companion disk at the back of the book. For analysts, researchers, and students in university, industrial, and government courses on regression, this text is an excellent introduction to the subject and an efficient means of learning how to use a valuable analytical tool. It will also prove an invaluable reference resource for applied scientists and statisticians.