Open Problems in Topology

Open Problems in Topology
Author: J. van Mill
Publisher: North Holland
Total Pages: 716
Release: 1990
Genre: Mathematics
ISBN:

From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.

Open Problems in Topology II

Open Problems in Topology II
Author: Elliott M. Pearl
Publisher: Elsevier
Total Pages: 777
Release: 2011-08-11
Genre: Mathematics
ISBN: 0080475299

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world

Open Problems in Mathematics

Open Problems in Mathematics
Author: John Forbes Nash, Jr.
Publisher: Springer
Total Pages: 543
Release: 2018-05-31
Genre: Mathematics
ISBN: 9783319812106

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.

Introduction to Topology

Introduction to Topology
Author: Theodore W. Gamelin
Publisher: Courier Corporation
Total Pages: 258
Release: 2013-04-22
Genre: Mathematics
ISBN: 0486320189

This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.

Elementary Topology

Elementary Topology
Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
Total Pages: 432
Release:
Genre: Mathematics
ISBN: 9780821886250

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.

A Cp-Theory Problem Book

A Cp-Theory Problem Book
Author: Vladimir V. Tkachuk
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2011-03-23
Genre: Mathematics
ISBN: 1441974423

The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.

Toric Topology

Toric Topology
Author: Victor M. Buchstaber
Publisher: American Mathematical Soc.
Total Pages: 534
Release: 2015-07-15
Genre: Mathematics
ISBN: 147042214X

This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields. The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism. This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.

Topics in Topological Graph Theory

Topics in Topological Graph Theory
Author: Lowell W. Beineke
Publisher: Cambridge University Press
Total Pages: 387
Release: 2009-07-09
Genre: Mathematics
ISBN: 1139643681

The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.

Unsolved Problems in Geometry

Unsolved Problems in Geometry
Author: Hallard T. Croft
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461209633

Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.

Topology Through Inquiry

Topology Through Inquiry
Author: Michael Starbird
Publisher: American Mathematical Soc.
Total Pages: 313
Release: 2020-09-10
Genre: Education
ISBN: 1470462613

Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.