Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 292
Release: 2011-01-01
Genre: Mathematics
ISBN: 9781611970739

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Large Scale Eigenvalue Problems

Large Scale Eigenvalue Problems
Author: J. Cullum
Publisher: Elsevier
Total Pages: 339
Release: 1986-01-01
Genre: Mathematics
ISBN: 0080872387

Results of research into large scale eigenvalue problems are presented in this volume. The papers fall into four principal categories:novel algorithms for solving large eigenvalue problems, novel computer architectures, computationally-relevant theoretical analyses, and problems where large scale eigenelement computations have provided new insight.

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems
Author: Daniel Kressner
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2006-01-20
Genre: Mathematics
ISBN: 3540285024

This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Applied Numerical Linear Algebra

Applied Numerical Linear Algebra
Author: James W. Demmel
Publisher: SIAM
Total Pages: 426
Release: 1997-08-01
Genre: Mathematics
ISBN: 0898713897

This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing

Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing
Author: Tetsuya Sakurai
Publisher: Springer
Total Pages: 312
Release: 2018-01-03
Genre: Computers
ISBN: 3319624261

This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers. It gathers selected topics presented at the International Workshops on Eigenvalue Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA2014 and EPASA2015), which brought together leading researchers working on the numerical solution of matrix eigenvalue problems to discuss and exchange ideas – and in so doing helped to create a community for researchers in eigenvalue problems. The topics presented in the book, including novel numerical algorithms, high-performance implementation techniques, software developments and sample applications, will contribute to various fields that involve solving large-scale eigenvalue problems.

Software for Exascale Computing - SPPEXA 2016-2019

Software for Exascale Computing - SPPEXA 2016-2019
Author: Hans-Joachim Bungartz
Publisher: Springer Nature
Total Pages: 624
Release: 2020-07-30
Genre: Computers
ISBN: 3030479560

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.

Approximation of Large-Scale Dynamical Systems

Approximation of Large-Scale Dynamical Systems
Author: Athanasios C. Antoulas
Publisher: SIAM
Total Pages: 489
Release: 2009-06-25
Genre: Mathematics
ISBN: 0898716586

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.

Optimization Algorithms on Matrix Manifolds

Optimization Algorithms on Matrix Manifolds
Author: P.-A. Absil
Publisher: Princeton University Press
Total Pages: 240
Release: 2009-04-11
Genre: Mathematics
ISBN: 1400830249

Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.