Sobolev Spaces

Sobolev Spaces
Author: Vladimir Maz'ya
Publisher: Springer Science & Business Media
Total Pages: 882
Release: 2011-02-11
Genre: Mathematics
ISBN: 3642155642

Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

Fractional Sobolev Spaces and Inequalities

Fractional Sobolev Spaces and Inequalities
Author: D. E. Edmunds
Publisher: Cambridge University Press
Total Pages: 170
Release: 2022-10-13
Genre: Mathematics
ISBN: 1009254642

The fractional Sobolev spaces studied in the book were introduced in the 1950s by Aronszajn, Gagliardo and Slobodeckij in an attempt to fill the gaps between the classical Sobolev spaces. They provide a natural home for solutions of a vast, and rapidly growing, number of questions involving differential equations and non-local effects, ranging from financial modelling to ultra-relativistic quantum mechanics, emphasising the need to be familiar with their fundamental properties and associated techniques. Following an account of the most basic properties of the fractional spaces, two celebrated inequalities, those of Hardy and Rellich, are discussed, first in classical format (for which a survey of the very extensive known results is given), and then in fractional versions. This book will be an Ideal resource for researchers and graduate students working on differential operators and boundary value problems.

Harmonic Analysis and Partial Differential Equations

Harmonic Analysis and Partial Differential Equations
Author: Anatoly Golberg
Publisher: Springer Nature
Total Pages: 319
Release: 2023-04-26
Genre: Mathematics
ISBN: 3031254244

Over the course of his distinguished career, Vladimir Maz'ya has made a number of groundbreaking contributions to numerous areas of mathematics, including partial differential equations, function theory, and harmonic analysis. The chapters in this volume - compiled on the occasion of his 80th birthday - are written by distinguished mathematicians and pay tribute to his many significant and lasting achievements.

Sobolev Maps to the Circle

Sobolev Maps to the Circle
Author: Haim Brezis
Publisher: Springer Nature
Total Pages: 552
Release: 2022-01-01
Genre: Mathematics
ISBN: 1071615122

The theory of real-valued Sobolev functions is a classical part of analysis and has a wide range of applications in pure and applied mathematics. By contrast, the study of manifold-valued Sobolev maps is relatively new. The incentive to explore these spaces arose in the last forty years from geometry and physics. This monograph is the first to provide a unified, comprehensive treatment of Sobolev maps to the circle, presenting numerous results obtained by the authors and others. Many surprising connections to other areas of mathematics are explored, including the Monge-Kantorovich theory in optimal transport, items in geometric measure theory, Fourier series, and non-local functionals occurring, for example, as denoising filters in image processing. Numerous digressions provide a glimpse of the theory of sphere-valued Sobolev maps. Each chapter focuses on a single topic and starts with a detailed overview, followed by the most significant results, and rather complete proofs. The “Complements and Open Problems” sections provide short introductions to various subsequent developments or related topics, and suggest newdirections of research. Historical perspectives and a comprehensive list of references close out each chapter. Topics covered include lifting, point and line singularities, minimal connections and minimal surfaces, uniqueness spaces, factorization, density, Dirichlet problems, trace theory, and gap phenomena. Sobolev Maps to the Circle will appeal to mathematicians working in various areas, such as nonlinear analysis, PDEs, geometric analysis, minimal surfaces, optimal transport, and topology. It will also be of interest to physicists working on liquid crystals and the Ginzburg-Landau theory of superconductors.

Geometric Properties for Parabolic and Elliptic PDE's

Geometric Properties for Parabolic and Elliptic PDE's
Author: Rolando Magnanini
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2012-11-27
Genre: Mathematics
ISBN: 8847028418

The study of qualitative aspects of PDE's has always attracted much attention from the early beginnings. More recently, once basic issues about PDE's, such as existence, uniqueness and stability of solutions, have been understood quite well, research on topological and/or geometric properties of their solutions has become more intense. The study of these issues is attracting the interest of an increasing number of researchers and is now a broad and well-established research area, with contributions that often come from experts from disparate areas of mathematics, such as differential and convex geometry, functional analysis, calculus of variations, mathematical physics, to name a few. This volume collects a selection of original results and informative surveys by a group of international specialists in the field, analyzes new trends and techniques and aims at promoting scientific collaboration and stimulating future developments and perspectives in this very active area of research.

A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models

A3N2M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models
Author: Tadele Mengesha
Publisher: Springer Nature
Total Pages: 325
Release: 2023-09-12
Genre: Mathematics
ISBN: 3031340892

This volume collects papers based on plenary and invited talks given at the 50th Barrett Memorial Lectures on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models that was organized by the University of Tennessee, Knoxville and held virtually in May 2021. The three-day meeting brought together experts from the computational, scientific, engineering, and mathematical communities who work with nonlocal models. These proceedings collect contributions and give a survey of the state of the art in computational practices, mathematical analysis, applications of nonlocal models, and explorations of new application domains. The volume benefits from the mixture of contributions by computational scientists, mathematicians, and application specialists. The content is suitable for graduate students as well as specialists working with nonlocal models and covers topics on fractional PDEs, regularity theory for kinetic equations, approximation theory for fractional diffusion, analysis of nonlocal diffusion model as a bridge between local and fractional PDEs, and more.

Qα Analysis on Euclidean Spaces

Qα Analysis on Euclidean Spaces
Author: Jie Xiao
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 230
Release: 2019-03-18
Genre: Mathematics
ISBN: 3110600285

Starting with the fundamentals of Qα spaces and their relationships to Besov spaces, this book presents all major results around Qα spaces obtained in the past 16 years. The applications of Qα spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.

Finite Elements I

Finite Elements I
Author: Alexandre Ern
Publisher: Springer Nature
Total Pages: 325
Release: 2021-03-22
Genre: Mathematics
ISBN: 3030563413

This book is the first volume of a three-part textbook suitable for graduate coursework, professional engineering and academic research. It is also appropriate for graduate flipped classes. Each volume is divided into short chapters. Each chapter can be covered in one teaching unit and includes exercises as well as solutions available from a dedicated website. The salient ideas can be addressed during lecture, with the rest of the content assigned as reading material. To engage the reader, the text combines examples, basic ideas, rigorous proofs, and pointers to the literature to enhance scientific literacy. Volume I is divided into 23 chapters plus two appendices on Banach and Hilbert spaces and on differential calculus. This volume focuses on the fundamental ideas regarding the construction of finite elements and their approximation properties. It addresses the all-purpose Lagrange finite elements, but also vector-valued finite elements that are crucial to approximate the divergence and the curl operators. In addition, it also presents and analyzes quasi-interpolation operators and local commuting projections. The volume starts with four chapters on functional analysis, which are packed with examples and counterexamples to familiarize the reader with the basic facts on Lebesgue integration and weak derivatives. Volume I also reviews important implementation aspects when either developing or using a finite element toolbox, including the orientation of meshes and the enumeration of the degrees of freedom.