Geometric Qp Functions

Geometric Qp Functions
Author: Jie Xiao
Publisher: Springer Science & Business Media
Total Pages: 245
Release: 2006-11-15
Genre: Mathematics
ISBN: 3764377631

This book documents the rich structure of the holomorphic Q function spaces which are geometric in the sense that they transform naturally under conformal mappings, with particular emphasis on recent development based on interaction between geometric function and measure theory and other branches of mathematical analysis, including potential theory, harmonic analysis, functional analysis, and operator theory. Largely self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces. Self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces.

A Primer on Mapping Class Groups

A Primer on Mapping Class Groups
Author: Benson Farb
Publisher: Princeton University Press
Total Pages: 490
Release: 2012
Genre: Mathematics
ISBN: 0691147949

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces

Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces
Author: F. Dahmani
Publisher: American Mathematical Soc.
Total Pages: 164
Release: 2017-01-18
Genre: Mathematics
ISBN: 1470421941

he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.

Holomorphic Q Classes

Holomorphic Q Classes
Author: Jie Xiao
Publisher: Springer
Total Pages: 121
Release: 2003-07-01
Genre: Mathematics
ISBN: 3540454349

The space Q p consists of all holomorphic functions f on the unit disk for which the L^2 area integrals of its derivative against the p-th power of the Green function of the unit disk are uniformly bounded in the variable that survives the integration. It turns out that Q 1 coincides with BMOA, while, for p>1, Q p are just the Bloch space. For p/in (0,1) the Q p furnish an increasing sequence of spaces, each invariant under conformal mappings of the unit disk onto itself, which interpolate between the Dirichlet space and BMOA. This monograph covers a number of important aspects in complex, functional and harmonic analysis. The primary focus is Q p, p/in (0,1), and their equivalent characterizations. Based on the up-to-date results obtained by experts in their respective fields, each of the eight chapters unfolds from the basics to the more complex. The exposition here is rapid-paced and efficient, with proofs and examples.

Groups Acting on Hyperbolic Space

Groups Acting on Hyperbolic Space
Author: Juergen Elstrodt
Publisher: Springer Science & Business Media
Total Pages: 552
Release: 1997-11-12
Genre: Mathematics
ISBN: 9783540627456

This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,

Fourier Analysis on Finite Groups and Applications

Fourier Analysis on Finite Groups and Applications
Author: Audrey Terras
Publisher: Cambridge University Press
Total Pages: 456
Release: 1999-03-28
Genre: Mathematics
ISBN: 9780521457187

It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.

Translation Generalized Quadrangles

Translation Generalized Quadrangles
Author: Joseph Adolf Thas
Publisher: World Scientific
Total Pages: 377
Release: 2006
Genre: Mathematics
ISBN: 9812569510

Translation generalized quadrangles play a key role in the theory of generalized quadrangles, comparable to the role of translation planes in the theory of projective and affine planes. The notion of translation generalized quadrangle is a local analogue of the more global ?Moufang Condition?, a topic of great interest, also due to the classification of all Moufang polygons. Attention is thus paid to recent results in that direction, but also many of the most important results in the general theory of generalized quadrangles that appeared since 1984 are treated.Translation Generalized Quadrangles is essentially self-contained, as the reader is only expected to be familiar with some basic facts on finite generalized quadrangles. Proofs that are either too long or too technical are left out, or just sketched. The three standard works on generalized quadrangles are (co-)authored by the writers of this book: ?Finite Generalized Quadrangles? (1984) by S E Payne and J A Thas, ?Generalized Polygons? (1998) by H Van Maldeghem, and ?Symmetry in Finite Generalized Quadrangles? (2004) by K Thas.

Groups and Geometries

Groups and Geometries
Author: Lino Di Martino
Publisher: Birkhäuser
Total Pages: 267
Release: 2013-12-01
Genre: Mathematics
ISBN: 3034888198

On September 1-7, 1996 a conference on Groups and Geometries took place in lovely Siena, Italy. It brought together experts and interested mathematicians from numerous countries. The scientific program centered around invited exposi tory lectures; there also were shorter research announcements, including talks by younger researchers. The conference concerned a broad range of topics in group theory and geometry, with emphasis on recent results and open problems. Special attention was drawn to the interplay between group-theoretic methods and geometric and combinatorial ones. Expanded versions of many of the talks appear in these Proceedings. This volume is intended to provide a stimulating collection of themes for a broad range of algebraists and geometers. Among those themes, represented within the conference or these Proceedings, are aspects of the following: 1. the classification of finite simple groups, 2. the structure and properties of groups of Lie type over finite and algebraically closed fields of finite characteristic, 3. buildings, and the geometry of projective and polar spaces, and 4. geometries of sporadic simple groups. We are grateful to the authors for their efforts in providing us with manuscripts in LaTeX. Barbara Priwitzer and Thomas Hintermann, Mathematics Editors of Birkhauser, have been very helpful and supportive throughout the preparation of this volume.

In the Tradition of Thurston

In the Tradition of Thurston
Author: Ken’ichi Ohshika
Publisher: Springer Nature
Total Pages: 724
Release: 2020-12-07
Genre: Mathematics
ISBN: 3030559289

This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.

The Arithmetic of Fundamental Groups

The Arithmetic of Fundamental Groups
Author: Jakob Stix
Publisher: Springer Science & Business Media
Total Pages: 387
Release: 2012-01-10
Genre: Mathematics
ISBN: 3642239056

In the more than 100 years since the fundamental group was first introduced by Henri Poincaré it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, l-adic, p-adic, pro-algebraic and motivic. It explores a wealth of topics that range from anabelian geometry (in particular the section conjecture), the l-adic polylogarithm, gonality questions of modular curves, vector bundles in connection with monodromy, and relative pro-algebraic completions, to a motivic version of Minhyong Kim's non-abelian Chabauty method and p-adic integration after Coleman. The editor has also included the abstracts of all the talks given at the Heidelberg meeting, as well as the notes on Coleman integration and on Grothendieck's fundamental group with a view towards anabelian geometry taken from a series of introductory lectures given by Amnon Besser and Tamás Szamuely, respectively.